Visual Data Analysis and Simulation Prediction for COVID-19

Abstract

The COVID-19 (formerly, 2019-nCoV) epidemic has become a global health emergency, as such, WHO declared PHEIC. China has taken the most hit since the outbreak of the virus, which could be dated as far back as late November by some experts. It was not until January 23rd that the Wuhan government finally recognized the severity of the epidemic and took a drastic measure to curtain the virus spread by closing down all transportation connecting the outside world. In this study, we seek to answer a few questions: How did the virus get spread from the epicenter Wuhan city to the rest of the country? To what extent did the measures, such as, city closure and community quarantine, help controlling the situation? More importantly, can we forecast any significant future development of the event had some of the conditions changed? By collecting and visualizing publicly available data, we first show patterns and characteristics of the epidemic development; we then employ a mathematical model of disease transmission dynamics to evaluate the effectiveness of some epidemic control measures, and more importantly, to offer a few tips on preventive measures.

Publication
arXiv:2002.07096 [physics.med-ph]
Xingyu Ni
Xingyu Ni
PhD Student at Center on Frontiers of Computing Studies

My research interests include computational physics, computer graphics, physical simulation and physically based rendering.