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A B S T R A C T

In this study, we present the bicubic Hermite element method (BHEM), a new computational framework de-
vised for the elastodynamic simulation of thin-shell structures. The BHEM is constructed based on quadrilateral
Hermite patches, which serve as a unified representation for shell geometry, simulation, collision avoidance,
as well as rendering. Compared with the commonly utilized linear FEM, the BHEM offers higher-order solution
spaces, enabling the capture of more intricate and smoother geometries while employing significantly fewer
finite elements. In comparison to other high-order methods, the BHEM achieves conforming 1 continuity
for Kirchhoff–Love (KL) shells with minimal complexity. Furthermore, by leveraging the subdivision and
convex hull properties of Hermite patches, we develop an efficient algorithm for ray-patch intersections,
facilitating collision handling in simulations and ray tracing in rendering. This eliminates the need for laborious
remodeling of the pre-existing surface as the conventional approaches do. We substantiate our claims with
comprehensive experiments, which demonstrate the high accuracy and versatility of the proposed method.
1. Introduction

The mechanical properties of thin-shell structures are commonly
described using the Kirchhoff–Love (KL) theory [1], which neglects
transverse shear effects and focuses on the in-plane stretching and
lateral bending of the shell’s midsurface. Under the KL assumption,
the energy density function derived from the elastic strain incorporates
second-order derivatives of displacements (as elaborated in Section 3).
This requirement necessitates 2 regularity of the geometric repre-
sentation of midsurface, which implies 1 continuity, to ensure a
well-defined analysis of the elastic energy.

To effectively address the second-order thin-shell energy, many en-
deavors have been developed, tested, and honed. In the realm of linear
finite-element analysis, which is highly favored within the field of
computer graphics, a customary solution is to reformulate the bending
energy as a specialized function of the dihedral angle based on the
discrete differential geometry principle [2–4]. Nevertheless, this dis-
cretized edge-based energy allows bending motion along the common
edges of elements only and eventually fails to converge towards the
shape operator of the smooth surface at the element interfaces, irre-
spective of the chosen discretization scheme and mesh resolution [5].
Isogeometric Analysis (IGA) [6,7] is an appealing alternative to at-
taining high-order continuity solution space. It utilizes various basis
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functions emanating from computer-aided geometric design (CAGD) in
finite element analysis for their global smoothness. One of the earliest
depictions of this approach was presented by Cirak et al. [8,9], who
devised a finite element formulation grounded in Loop subdivision sur-
faces for Kirchhoff–Love thin-shell simulation. Loop subdivision scheme
can easily represent smooth surfaces of arbitrary topology with polyg-
onal mesh data structures. By employing the same convergent shape
function for displacement field interpolation, the subdivision finite
element scheme [8,9] requires only nodal displacement degrees of free-
dom while retaining 1 continuity across elements, which is necessary
for thin-shell simulation. The use of more general non-uniform rational
B-splines (NURBS) basis functions in the finite element context was also
proposed by Hughes et al. [6] in 2005. NURBS patch is more memory-
friendly than subdivision surface, but it needs additional constraints
to maintain conforming 1 continuity within multi-patch models [10].
Since the smooth surface does not pass through the coarse control
mesh nodes for both NURBS and subdivision FEM scheme, applying
boundary conditions and resolving contacts on control nodes need
complicated treatment. Hermite elements stand out for their inherent
guarantee of 1 continuity among patches by incorporating shared
derivatives as degrees of freedom. This particular type of element has
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010-4485/© 2024 Elsevier Ltd. All rights are reserved, including those for text and

https://doi.org/10.1016/j.cad.2024.103734
Received 17 April 2024; Accepted 22 May 2024
data mining, AI training, and similar technologies.

https://www.elsevier.com/locate/cad
https://www.elsevier.com/locate/cad
mailto:binwangbuaa@gmail.com
mailto:baoquan.chen@gmail.com
https://doi.org/10.1016/j.cad.2024.103734
https://doi.org/10.1016/j.cad.2024.103734
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cad.2024.103734&domain=pdf


Computer-Aided Design 174 (2024) 103734X. Ni et al.
been demonstrated to be advantageous when solving Kirchhoff plate
problems [11–14]. Even though the curved Hermite surface exactly
goes through the nodal position, existing studies still heavily resort to
surface triangulation for collision handling and rendering, diminishing
the value of high-order methods.

In this paper, in order to fully leverage the advantages provided by
the high-order method, while concurrently minimizing the modifica-
tions to the FEM simulation pipeline, we develop a novel framework for
thin-shell simulation. The most crucial aspect of our framework lies in
the utilization of a unified bicubic-Hermite-patches-based representa-
tion, which serves as the foundation of midsurface geometric modeling,
dynamics simulation, and ray-tracing rendering purposes. Specifically,
we present three main contributions to achieving this goal.

First, we develop a 1-continuous finite element solution for dy-
namic simulation of Kirchhoff–Love thin shells, dubbed BHEM (Bicubic
Hermite Element Method). We listed the derivation process of the gov-
erning equations and its weak form (Section 4) of KL thin shells from
the first principles of continuum mechanics. In the Hermit polynomial
space, the discretized form of the governing equations, along with the
gradient and the Hessian matrix (see the supplementary material) of
the hyperelastic energy, are provided to facilitate a seamless implicit
solve (Section 6.1). Furthermore, the BHEM also incorporates a tailored
Hessian matrix which entails much less computational overhead, to
cater to applications with restricted time constraints.

Further consolidating the integration between geometry represen-
tation and simulation, and bypassing mesh-based collision detection,
our second main contribution is a BH-surface intersection detection
algorithm that serves for both CCD and rendering tasks (Section 5). In
our method, the bicubic Hermite surfaces are transformed into their
equivalent Bézier form. Based on the convex hull property of the
Bézier surface, a bounding-volume-hierarchy (BVH) tree is constructed
through dynamic subdivision of the surface and then pruned using
Newton’s method to enhance the computation efficiency. Our method
ensures the discovery of the first intersection point in both static and
dynamic settings. It can also be extended to other spline-based surface
intersection detection, such as rational Bézier patches and NURBS,
which we believe is a critical missing piece of current IGA research.

Last but not least, we conduct a broad array of experiments metic-
ulously designed to showcase the fidelity and efficiency of the BHEM
framework. We first test our method under typical quasi-static settings.
The simulation results are highly consistent with the theoretical solu-
tions. Compared with linear FEMs, BHEM can capture rich geometric
features with much fewer DoFs, better convergence speed, and less time
cost. Furthermore, we demonstrate the applicability of the framework
by applying it to a variety of graphics scenarios with complex collisions
and diverse boundary conditions. We emphasize the smoothness and
highlight the characteristic wrinkles and folds of cloth geometries
during dynamic simulations in all these experiments.

2. Related work

2.1. Thin-shell simulation

Physics-based thin shell simulation, such as cloth [15–20], pa-
per [21–24], and skin [25,26], is a long-standing topic in computer
graphics owing to their visually appealing geometry and desirable
mechanical properties. Following the seminal work of Terzopoulos
et al. [27], a series of discrete constitutive models [3–5,28] have been
developed for the elastic strain energy by applying geometric oper-
ators over the piecewise-linear surface, but with the bending energy
being a non-integrable function of the dihedral angle. Researchers have
taken many measures to circumvent the issue, such as subdivision
FEM [8,29–31] and discontinuous Galerkin (DG) FEM [32], but both
with numerical issues due to their unavoidable special treatments to
approximate or meet the continuity requirement of a Kirchhoff–Love
shell.
2

Another branch of the solution follows the route of isogeometric
analysis, in which the basis functions that express geometric shapes
are utilized in FE analysis for the physical field interpolation [10,33].
After the first attempt [34] for using NURBS surface to represent a
deformable thin object, NURBS has been widely exploited in cloth
motion to describe the characteristic wrinkles or folds [10] and in
volumetric object simulation [35]. However, due to its complex math
formulation, the NURBS surfaces have involved derivation and high
computational cost in graphics applications.

Studies have explored Hermite-interpolated surfaces on triangular
elements [36,37], quadrangular elements [38–40], and hybrid ele-
ments [41] in engineering and numerical analysis. Triangular Hermite
elements use higher-order polynomials as basis functions so as to
achieve 𝐶1 continuity, leading to more computational cost. By contrast,
quadrangular Hermite elements can have simpler but accurate expres-
sions, though fall short in geometric flexibility. In graphics, Hermite
patches were originally adopted for freeform surface modeling [42,43],
but they lack applications in deformable objects. In this work, we try to
establish a complete framework that enables dynamic simulation and
rendering of Hermite-interpolated surfaces.

2.2. Rendering of parametric surfaces

The calculation of ray tracing a parametric surface is to find the
first intersection point between a ray and a surface, which is equivalent
to solving a system of nonlinear equations obtained by combining the
parametric equations of the two geometric primitives. A commonly
adopted approach to ray-trace a high-order parametric surface is to tri-
angulate the surface and render the approximated mesh. But to reserve
the special advantages of high-order representation, it is beneficial
to explore an efficient and robust rendering method that solves the
problem directly on the parametric surface.

Existing studies have developed various numerical methods for this
problem. Resultant elimination [44,45] transforms the problem into
finding the minimum of a uni-variant polynomial, which works but
requires heavy numerical computation with complex situational discus-
sion, thus lack of robustness. Newton’s method [46–51] is a powerful
tool that can deliver an accurate solution with a fast convergence speed,
but it depends severely on the initial conditions and has no guarantee
for a correct solution since it only solves the problem locally. Also,
the system would become ill-conditioned if a ray intersects the surface
tangentially.

To solve for a global solution robustly, researchers have introduced
subdivision methods [52–55] that recursively prune the parameter
domain until convergence. Bézier clipping [52,56,57] is a classical
subdivision method that utilizes the convex-hull property of Bézier
patches. It has been widely used for ray-tracing any surfaces that can
be converted into rational Bézier patches, including B-splines [57]
and NURBS [58]. Meanwhile, subdivision-based methods often expend
more time and space cost than Newton’s methods. Therefore, a popular
idea is to first conduct subdivision methods to construct a BVH for
culling and getting a rough solution as an initial guess and then
use Newton’s descent to get a final answer [47–49,51]. Simple geo-
metric primitives, such as Chebyshev boxing/sphere [51,59], Convex
hulls [49,60], and axis aligned bounding box [47,48] are the popular
choices for BVH representations.

2.3. Collision detection of parametric surfaces

Continuous collision detection (CCD) for high-order meshes or para-
metric surfaces is mostly conducted by detecting collisions between two
approximated triangle meshes [61], due to the maturity of traditional
CCD techniques for linear FEM. As can be imagined, this would intro-
duce inevitable false positives and negatives where the original surface

sinks or extrudes from the linear mesh.
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Conducting DCD/CCD directly on parametric surfaces would result
in solving a 4D/5D nonlinear system with a complex solution manifold,
which is usually reduced to point pairs in implementation [62,63].
Similar to the ray-tracing problem, solutions for CCD are always estab-
lished on either subdivision methods [62–64] to recursively solve for a
global optimum or Newton’s methods [10,63,65] to directly solve for a
local optimum. Researchers need to get an appropriate initial guess for
Newton’s method and cull unnecessary checks via assisting strategies
including tessellation [10], BVH [66], spatial partition [67], etc. Re-
cently, another promising approach proposed by Zhang et al. [68,69]
modeled the CCD problem between polynomial surfaces as a sum-
of-squares programming (SOSP) so bypassed linearizing high-order
surfaces. This method includes an auxiliary hyperparameter in SOSP
that directly determines the certificate of the exact solution, which
requires a trade-off between efficiency and effectiveness.

3. Thin-shell theory

To make the paper self-contained, in this section, we will briefly
review the thin-shell theory based upon the Kirchhoff–Love assumption,
which generally follows the work of Cirak et al. [8] but is not restricted
to linearized deformation.

Conventions and notations. The Einstein summation convention is fol-
lowed, where an index variable appears twice in a single term implying
summation of that term over all the values of the index. We further
assume that the value of an index denoted by a lowercase Latin letter
(e.g., 𝑖, 𝑗, and 𝑘) ranges over the set {1, 2, 3}, while that denoted by
a lowercase Greek letter (e.g., 𝛼, 𝛽, and 𝛾) ranges over the set {1, 2}.
Besides, indices appearing after commas imply partial derivatives.

3.1. Geometries

We begin by considering a midsurface 𝛺 ⊂ R3. As a surface, 𝛺 is
parameterized with curvilinear coordinates (𝜉1, 𝜉2). The possible values
of these coordinates form a parameter space 𝜔, and the parameteriza-
tion is then given by a mapping 𝒙 ∶ 𝜔 → 𝛺 such that the following
properties hold:

• At each point of 𝛺, the two partial derivatives 𝜕𝒙∕𝜕𝜉1 and 𝜕𝒙∕𝜕𝜉2
exist and are linearly independent;

• As a function 𝜔 → R3, 𝒙(𝜉1, 𝜉2), as well as its first- and second-
order derivatives, is square-integrable.

The former property allows the definition of the unit normal vector
𝒂3 = 𝒂1 × 𝒂2∕‖𝒂1 × 𝒂2‖, in which 𝒂𝛼 denotes 𝜕𝒙∕𝜕𝜉𝛼 , while the latter
property is required by analysis of elastic energy.

According to the Kirchhoff–Love assumption, the midsurface is ex-
truded by a constant distance ℎ∕2 both along and opposite to the
surface normal direction, which forms the volume of a ℎ-thick shell.
With 𝜔ℎ defined as 𝜔×[−ℎ∕2,+ℎ∕2], the extrusion of 𝛺 is described by
a function 𝒓 ∶ 𝜔ℎ → 𝛺ℎ as follows:

𝒓(𝜉1, 𝜉2, 𝜉3) = 𝒙(𝜉1, 𝜉2) + 𝜉3𝒂3(𝜉1, 𝜉2), − ℎ
2
≤ 𝜉3 ≤ +ℎ

2
, (1)

hich lays the foundation of a thin-shell geometry.
To analyze shell deformation, the geometric difference between

eformed and undeformed (reference) configurations needs evaluation.
e assume that each point of 𝜔ℎ always maps to the same material

oint, and use symbols with overbars to indicate quantities in the
eference configuration. A function �̄� ∶ 𝜔ℎ → �̄�ℎ can be similarly
efined by

̄(𝜉1, 𝜉2, 𝜉3) = �̄�(𝜉1, 𝜉2) + 𝜉3�̄�3(𝜉1, 𝜉2), − ℎ
2
≤ 𝜉3 ≤ +ℎ

2
. (2)

.2. Strains

Given the parametric description of shell geometry, we acquire the
angent basis vectors of 𝛺ℎ as follows:
3

𝒈𝑖 =
𝜕𝒓
𝜕𝜉𝑖

=
{

𝒂𝛼 + 𝜉3𝒂3,𝛼 , 𝑖 = 𝛼 < 3, (a)
𝒂3, 𝑖 = 3. (b) (3)

Dot products of these vectors result in covariant components of the
metric tensor. To be specific, 𝑔𝑖𝑗 = 𝒈𝑖 ⋅ 𝒈𝑗 is formulated by

𝑔𝑖𝑗 =

⎧

⎪

⎨

⎪

⎩

𝑎𝛼𝛽 − 2𝑏𝛼𝛽𝜉3 + 𝑐𝛼𝛽 (𝜉3)2, 𝑖 = 𝛼 < 3 ∧ 𝑗 = 𝛽 < 3, (a)
1, 𝑖 = 𝑗 = 3, (b)
0, otherwise, (c)

(4)

here 𝑎𝛼𝛽 = 𝒂𝛼 ⋅ 𝒂𝛽 , 𝑏𝛼𝛽 = 𝒂𝛼,𝛽 ⋅ 𝒂3, and 𝑐𝛼𝛽 = 𝒂3,𝛼 ⋅ 𝒂3,𝛽 correspond to
the 1, 2, and 3 fundamental forms of 𝑆, respectively.

With {�̄�𝑖} being the basis of the tensor space, the Green–Lagrange
strain is defined as half the difference between the metric tensors in
the deformed and undeformed configurations:

𝐸𝑖𝑗 =
1
2
(𝑔𝑖𝑗 − �̄�𝑖𝑗 ). (5)

s will be readily seen, 𝐸𝑖𝑗 can be expanded as

⎧

⎪

⎨

⎪

⎩

𝐸𝛼𝛽 = 𝐴𝛼𝛽 − 2𝐵𝛼𝛽𝜉3 + 𝐶𝛼𝛽 (𝜉3)2, (a)
𝐸3𝛼 = 𝐸𝛼3 = 0, (b)
𝐸33 = 0, (c)

(6)

followed by definitions 𝐴𝛼𝛽 = (𝑎𝛼𝛽 − �̄�𝛼𝛽 )∕2, 𝐵𝛼𝛽 = (𝑏𝛼𝛽 − �̄�𝛼𝛽 )∕2, and
𝐶𝛼𝛽 = (𝑐𝛼𝛽−𝑐𝛼𝛽 )∕2. Note that the 0-order term 𝐴𝛼𝛽 in Eq. (6a) represents
the membrane strain, while the other terms 𝐵𝛼𝛽𝜉3+𝐶𝛼𝛽 (𝜉3)2 characterize
the curvature strain. With the linear stain assumed in the thickness
direction, the highest-order term of Eq. (6a), specifically 𝐶𝛼𝛽 (𝜉3)2, is
omitted in the following calculation.

3.3. Energies

As suggested by previous studies [8,70], the formula of the elastic
strain energy 𝑉e is derived from the Green–Lagrange strain based upon
a St. Venant–Kirchhoff constitutive model, which is given in the form
of areal density ̄e as

̄e =
d𝑉e
d�̄�

=
(

𝐴𝛼𝛽𝐴𝛾𝛿ℎ + 1
3
𝐵𝛼𝛽𝐵𝛾𝛿ℎ

3
)

�̄�𝛼𝛽𝛾𝛿 , (7)

n which �̄�𝛼𝛽𝛾𝛿 is defined by

̄ 𝛼𝛽𝛾𝛿 = 𝜆
2
�̄�𝛼𝛽 �̄�𝛾𝛿 + 𝜇�̄�𝛽𝛾 �̄�𝛼𝛿 . (8)

Here, �̄�𝛼𝛽 is a contravariant tensor component, which can be calculated
by the matrix inversion (�̄�𝛼𝛽 )2×2 = (�̄�𝛼𝛽 )−12×2. 𝜆 and 𝜇, known as the first
and the second Lamé parameters, are deduced from Young’s modulus
𝑌 and Poisson’s ratio 𝜈 as 𝜆 = 𝑌 𝜈∕(1 − 𝜈2) and 𝜇 = 𝑌 ∕2(1 + 𝜈),
espectively.

The motion of a thin shell is also influenced by the kinetic energy
. With �̄� denoting mass density, similar to 𝑉e, 𝑇 is also written in the

orm of areal density ̄ as

̄ = d𝑇
d�̄�

= 1
2
�̄�ℎ(�̇� ⋅ �̇�), (9)

hich is derived in the material space by integrating energy density
long the thickness and ignoring high-order infinitesimals.

.4. Equations of motion

Finally, the equations of motion for a thin shell can be constructed
y analyzing the interchange of energy. Since the volumetric shell is
eplaced by its midsurface, we should also reduce any force that applies
o the shell into surface force by integration. Suppose that the areal
ensity of external force applied on �̄� is 𝒇 , and the linear density

on 𝛤 = 𝜕�̄� is 𝒕, D’Alembert’s principle states that for any virtual
deformation 𝛿𝒙,

(

𝛿̄ + 𝛿̄e
)

d�̄� = 𝒇 ⋅ 𝛿𝒙 d�̄� + 𝒕 ⋅ 𝛿𝒙 d𝛤 , (10)
∬�̄� ∬�̄� ∫𝛤
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in which 𝛿̄ = �̄�ℎ�̈� ⋅ 𝛿𝒙 can be interpreted as the virtual work done by
he inertia force, and the variation of ̄e can be expanded as

𝛿̄e =
(

ℎ𝐴𝛾𝛿 𝛿𝑎𝛼𝛽 +
1
3
ℎ3𝐵𝛾𝛿 𝛿𝑏𝛼𝛽

)

�̄�𝛼𝛽𝛾𝛿 , (11)

owing to the exchange symmetry of indices.
It is noteworthy that the surface area element d�̄� can be expressed

in the parameter space by

d�̄� =
√

�̄� d𝜉1d𝜉2, (12)

�̄� = (�̄�1 × �̄�2)2 = �̄�11�̄�22 − �̄�12�̄�21. (13)

4. The bicubic Hermite element method

4.1. Geometric discretization

To numerically analyze the statics and dynamics of a thin shell, we
divide its midsurface into a collection of bicubic Hermite patches that
share information via nodes, where the bicubic Hermite interpolation is
used to naturally maintain the 1 smoothness and square-integrability
(Section 3.1) in surface reconstruction.

As shown in Fig. 5, each patch corresponds to an axis-aligned
rectangle in the parameter space, and each rectangle side is entirely
shared by two adjacent patches. In the context of such discretization,
with the function value and its derivatives (i.e., 𝒙, 𝜕𝒙∕𝜕𝜉1, 𝜕𝒙∕𝜕𝜉2,
nd 𝜕2𝒙∕𝜕𝜉1𝜕𝜉2) stored at nodes, any point on a single patch satisfying
1 ∈ [𝜉1min, 𝜉

1
max] and 𝜉2 ∈ [𝜉2min, 𝜉

2
max] can be expressed with the piecewise

icubic Hermite interpolation (see the supplementary material), such
hat the midsurface can be parameterized by

(𝜉1, 𝜉2) =
𝑁
∑

𝐼=1
𝛷𝐼 (𝜉1, 𝜉2) 𝒒𝐼 , (14)

n which 𝒒𝐼 ∈ R3 (𝐼 = 1, 2, 3,… , 𝑁), treated as generalized coordinates,
enotes a value or derivative that is stored at nodes, and each 𝒒𝐼
orresponds to a shape function 𝛷𝐼 (𝜉1, 𝜉2). These shape functions have
ompact supports, so the summand 𝛷𝐼𝒒𝐼 takes nonzero values only if
𝐼 is stored at the 4 nodes of the patch that (𝜉1, 𝜉2) lies in. Typically,
he number of such 𝒒𝐼 is 16.

The bicubic Hermite patches can be readily used to discretize sur-
aces that are homeomorphic to a rectangle by embedding them in a
artesian grid and taking grid cells as patches (Fig. 5). More complex
urfaces, e.g., cylinders and torus, can also be divided into BH patches
ith the help of continuity boundary conditions (Section 4.2), which is

llustrated in Figs. 6(a) and 6(b).

.2. Boundary conditions

ontinuity boundary conditions. For BHEM simulations, it is significant
o incorporate the continuity boundary conditions in order to complete
eometric discretization. As an example, in the discretization of a
ylinder (Fig. 6(a)), a node with an azimuthal coordinate of 2𝜋 is
dentical to that with an azimuthal coordinate of 0. Whenever we
ncounter such a situation, only one of the overlapping nodes needs
aintenance. Any calculation that involves these nodes is referred to

s the maintained one.

ositional constraints. The BHEM prescribes two categories of posi-
ional constraints, namely Dirichlet and Neumann boundary conditions,
hich respectively constrain 𝒙(𝜉1, 𝜉2) and its first-order derivatives
t specific points. When at nodes, these constraints can be simply
ealized by removing their corresponding generalized coordinates from
he solution variables and taking their influence back to the governing
quations as a given term. Based on this, a constraint imposed on an el-
ment’s whole boundary curve can be realized through the combination
f Dirichlet constraints and Neumann constraints along the boundary
angent direction for every node on the boundary. Furthermore, to
pply the constraints at arbitrary points of the midsurface, Lagrange
ultipliers should be introduced, as done in conventional finite element
ethods.
4

.3. Governing equations

Now we consider discretizing Eq. (10) using the variational method
ased on the BH patches. Taking 𝛿̄e = 𝜕̄e∕𝜕𝒒𝐼 ⋅ 𝛿𝒒𝐼 , substituting
q. (14) into Eq. (10) yields
𝑁
∑

𝐼=1

(

∬�̄�

(

𝛷𝐼𝒇 ∗ −
𝜕̄e
𝜕𝒒𝐼

)

d�̄� + ∫𝛤
𝛷𝐼 𝒕 d𝛤

)

⋅ 𝛿𝒒𝐼 = 0, (15)

𝒇 ∗ = 𝒇 − �̄�ℎ
4𝑁
∑

𝐽=1
𝛷𝐽 �̈�𝐽 , (16)

which indicates that Eq. (10) is always true for any virtual deformation
interpolated through Eq. (14). Due to the arbitrariness of 𝛿𝒒𝐼 , every
coefficient of 𝛿𝒒𝐼 , i.e., the terms in the outermost parentheses of
Eq. (15), must equal to zero. Thus, for any 𝐼 (1 ≤ 𝐼 ≤ 𝑁), the following
equations hold:

∬�̄�
𝛷𝐼𝒇 d�̄� + ∫𝛤

𝛷𝐼 𝒕 d𝛤 −∬�̄�

𝜕̄e
𝜕𝒒𝐼

d�̄� −
𝑁
∑

𝐽=1
𝑀𝐼𝐽 �̈�𝐽 = 𝟎, (17)

where each coefficient of the mass matrix is defined as

𝑀𝐼𝐽 = ∬�̄�
�̄�ℎ𝛷𝐼𝛷𝐽 d�̄� = ∬𝛺

�̄�ℎ𝛷𝐼𝛷𝐽
√

�̄� d𝜉1d𝜉2. (18)

hese constitute the governing equations of a dynamic BHEM shell. For
tatic analysis, the last term in the left-hand side of Eq. (17) is omitted.

roperties of the mass matrix. Due to the compact support of the shape
unctions 𝛷, a coefficient 𝑀𝐼𝐽 is nonzero only when the affected scopes
f 𝛷𝐼 and 𝛷𝐽 overlap, i.e., the corresponding generalized coordinates
f 𝛷𝐼 and 𝛷𝐽 belong to the nodes of the same patch. This implies the
parsity of the mass matrix. Furthermore, with 𝛷𝐼 being a polynomial
f no more than degree 3, 𝛷𝐼𝛷𝐽 reaches a sixth-order at most in each
arametric dimension. Thus we conclude that 𝑀𝐼𝐽 can be calculated
recisely without much effort, given that

√

�̄� is also a polynomial
concerning the position.

External forces. We briefly introduce how to calculate the external
force term in Eq. (17), taking ∬�̄� 𝛷𝐼𝒇 d�̄� as an example. For an areal
force, the integration cannot be avoided. Typical examples are gravity
force (given by 𝒇grav = �̄�ℎ𝒈 with 𝒈 standing for the gravity acceleration)
and pressure force (given by 𝒇press = 𝑝𝒏 with 𝑝 denoting the magnitude
of pressure). On the other hand, a point force 𝒇pt exerted at an arbitrary
point can be reformulated as an areal force multiplied by a Dirac 𝛿
function. Given the point 𝒙pt (𝜉1pt , 𝜉

2
pt ), the closed integral form of 𝒇pt

can be calculated by

∬�̄�
𝛷𝐼𝒇pt𝛿(𝒙pt ) d�̄� =

∑

𝐼
𝛷𝐼 (𝜉1pt , 𝜉

2
pt )𝒇pt , (19)

which implies that a point force only influences the 16 generalized
coordinates of its nearest 4 nodes.

5. Ray-patch intersection detection

We can equivalently transform a BH surface into a Bézier surface
by regarding the cubic polynomials as linear combinations of Bernstein
basis polynomials of degree 3:

𝒙(𝜉1, 𝜉2) =
3
∑

𝑖=0

3
∑

𝑗=0
𝐵𝑖(𝜉1)𝐵𝑗 (𝜉2)𝒑𝑖𝑗 , (20)

where 𝐵𝑖(𝑥) is defined as
(3
𝑖

)

𝑥𝑖(1 − 𝑥)3−𝑖 and 𝒑𝑖𝑗 ∈ R3 denote the
control points. A Bézier form provides us with a strong property that
a surface lies completely within the convex hull of its control points,
and thus also completely within the bounding box of them in any
given Cartesian coordinate system, which lays the foundation of our
ray-surface intersection detection algorithms.

The surface intersection is an important geometric operation in
CAGD. We mainly focus on finding the intersection point between a
ray and a surface in this paper. According to whether the surface moves

during ray propagation, two kinds of intersections are detected.
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5.1. Static ray–patch intersection

Given a ray defined as

𝒙ray(𝜏) = 𝒙0 + 𝜏𝒅, (21)

where 𝒅 represents the direction and 𝜏 denotes the (pseudo) time, the
goal of intersection tests is to find (𝜉1, 𝜉2) and minimum 𝜏 > 0 such that
𝒙ray(𝜏) = 𝒙(𝜉1, 𝜉2) holds. The convex-hull property of Bézier surfaces
implies that for any 𝜉1, 𝜉2, and 𝜏 satisfying this intersection equation,
the following inequalities hold:

min
𝑖,𝑗∈{0,1,2,3}

{

𝒑𝑖𝑗 ⋅ �̂�𝑘
}

≤ (𝒙0 + 𝜏𝒅) ⋅ �̂�𝑘 ≤ max
𝑖,𝑗∈{0,1,2,3}

{

𝒑𝑖𝑗 ⋅ �̂�𝑘
}

. (22)

Here, �̂�𝑘 (𝑘 ∈ {1, 2, 3}) denotes the 𝑘th vector of the standard basis.
These inequalities correspond to an intersection test between the ray
and an axis-aligned bounding box (AABB). By solving Eq. (22) for 𝜏, we
can obtain an interval [𝜏min, 𝜏max] or determine that no 𝜏 > 0 satisfies all
the inequalities, indicating that the ray does not intersect the current
surface.

When the former case is encountered after solving Eq. (22), a divide-
and-conquer strategy is employed. The Bézier surface is split into four
smaller Bézier surfaces using De Casteljau’s algorithm [71] at specific
parameter coordinates. This recursive process allows for ray-AABB tests
to be performed, enabling the elimination of surfaces that cannot be
intersected by the ray. This continues until either all surfaces are
discarded or an arbitrarily small interval of 𝜏 is obtained.

The above subdivision-based algorithm is trivial but effective and
robust, converging linearly to the accurate intersection point. To mini-
mize the number of surfaces requiring collision checks, the selection of
the next surface is improved by using a min-heap of candidate surfaces.
Every time a new surface is generated, it is inserted into the heap
with 𝜏min as the key. When moving to another surface, the top of the
heap is chosen. The first surface that satisfies the termination condition
provides an accurate approximation of the minimum 𝜏 among all the
intersection points.

Finally, Newton’s method is employed to determine where to sub-
divide surfaces by directly solving 𝒙(𝜉1, 𝜉2) = 𝒙ray(𝜏). The central
parameter coordinates of a surface serve as the initial guess for New-
ton’s method during the subdivision process. Within a fixed number of
iterations, if Newton’s method converges to 𝜉1 ∈ [𝑢min, 𝑢max] and 𝜉2 ∈
[𝑣min, 𝑣max], we obtain an intersection point and use the corresponding
𝜏 to update the current optimal solution 𝜏opt if 𝜏 is smaller and positive.
Note that this intersection point may not be the closest one. We remove
it from the search space by abandoning the neighborhood of (𝜉1, 𝜉2) in
the parameter space and subdividing the other region as illustrated in
Fig. 9(b). In the case Newton’s method fails to converge, the surface is
split from its midpoint as shown in (Fig. 9(a)). The entire algorithm is
summarized in Alg. 1.

5.2. Dynamic ray–patch intersection

Assuming constant velocity within a single time step 𝛥𝑡, a time-
varying Bézier surface is given by

𝒙(𝜉1, 𝜉2, 𝑡) =
3
∑

𝑖=0

3
∑

𝑗=0
𝐵3
𝑖 (𝜉

1)𝐵3
𝑗 (𝜉

2)(𝒑𝑖𝑗 + 𝑡�̇�𝑖𝑗 ), (23)

where 𝒑𝑖𝑗 and �̇�𝑖𝑗 are the initial position and velocity of the (𝑖, 𝑗)-th
control point, and 𝑡 ∈ [0, 𝛥𝑡] indicates the time. The trajectory of a
moving point can be depicted as a parameterized ray as

𝒙p(𝑡) = 𝒙p0 + 𝑡�̇�p, (24)

where 𝒙p0 and �̇�p denote the initial position and velocity.
According to the convex-hull property, a necessary condition for the
5

intersection to occur at the moment 𝑡 is that the point lies inside the T
ALGORITHM 1: Static Intersecting Detection
Input: The ray 𝒙ray and the surface.
Output: The nearest intersection point (𝜉1, 𝜉2) or null indicating

no intersecion.
opt ← ∞;
onstruct a min heap;
f IntersectsAABB(𝒙ray, the whole surface) then Push the
whole surface into the heap with its 𝜏min as the key;
lse return null;
hile the heap is not empty do

The current surface ← the top of the heap;
if 𝜏min > 𝜏opt then break;
if the surface is small enough then return the middle
parameter coordinates of the surface ;

Find an intersection point by Newton’s method;
if converged then

Update 𝜏opt and (𝜉1opt , 𝜉
2
opt );

Subdivide the surface by the scheme in Fig. 9(b);
else

Subdivide the surface by the scheme in Fig. 9(a);
end
foreach subdivided surface do

if IntersectsAABB(𝒙ray, the subdivided surface) then
Push the surface into the heap with its 𝜏min as the key;

end
end

end
if 𝜏opt ≠ +∞ then return (𝜉1opt , 𝜉

2
opt );

else return null;

axis-aligned bounding box of the surface at that moment, which can be
written as

min
𝑖,𝑗

{

(𝒑𝑖𝑗 + 𝑡�̇�𝑖𝑗 ) ⋅ �̂�𝑘
}

≤ (𝒙p0 + 𝑡�̇�p) ⋅ �̂�𝑘 ≤ max
𝑖,𝑗

{

(𝒑𝑖𝑗 + 𝑡�̇�𝑖𝑗 ) ⋅ �̂�𝑘
}

, (25)

ith 𝑖, 𝑗 ∈ {0, 1, 2, 3}. By solving Eq. (25) for 𝑡 similar to the approach
described in Section 5.1 for 𝜏, we can employ a similar subdivision-
based algorithm.

For each inequality on the left-hand side, the result is equivalent to
the union of the intervals solved from the inequalities

(𝒑𝑖𝑗 + 𝑡�̇�𝑖𝑗 ) ⋅ �̂�𝑘 ≤ (𝒙p0 + 𝑡�̇�p) ⋅ �̂�𝑘, (26)

here 𝑖 and 𝑗 ranges in {0, 1, 2, 3}. The same interpretation holds for the
ight-hand side of Eq. (25). The solution of Eq. (25) is the intersection
f the two unions, which can be found using segment trees or greedy
lgorithms. If no feasible solution exists within [0, 𝛥𝑡], no intersection
s detected during the time step. Otherwise, we can utilize the divide-
nd-conquer framework described in Section 5.1 to recursively detect
ossible intersections. Similarly, Newton’s method can be employed for
cceleration.

. Implementation

.1. Implicit BHEM solver

Having established spatially discretized equations of motion (Sec-
ion 4.3), we here discuss how to discretize Eq. (17) in time.

As a preparation, we assemble the mass matrix 𝑴 ∈ R3𝑁×3𝑁

y a 16-point Gauss–Legendre quadrature method (see the supple-
entary material) according to the component definition in Eq. (18).

he generalized coordinates and the corresponding generalized forces
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exerted on them are also numerically integrated and stacked into a 3𝑁-
imensional 𝒒 and 𝑭 , respectively. Then Eq. (17) is reformulated as

�̈� = 𝑭 , (27)

hich is further discretized by the implicit Euler scheme in time:

�̇�𝑛+1 = �̇�𝑛 + 𝛥𝑡𝑴−1𝑭 (𝒒𝑛+1, �̇�𝑛+1, 𝑡𝑛+1), (a)
𝒒𝑛+1 = 𝒒𝑛 + 𝛥𝑡 �̇�𝑛+1. (b)

(28)

y convention, we adopt Newton’s method to solve the above equations
teratively, where quadratic and cubic line searchers referring to the
idely used library ArcSim [21,72] are integrated. During each Newton

tep, the linear system is solved by a direct sparse LDLT Cholesky
actorizations [73].

Besides, for the aforementioned positional constraints at arbitrary
oints, we use the augmented Lagrangian method [74] to solve the
ptimization problem, which acquires a better convergence rate than
pure method of Lagrange multipliers.

he Hessian matrix. In a Newton’s method, the analytical form of
𝑭∕𝜕𝒒𝐼 (𝐼 = 1, 2, 3,… , 𝑁) is required. The most tricky part of the
erivatives is the contribution of the elastic force, namely the Hessian
atrix of 𝑉e w.r.t. the generalized coordinates. We have carefully
erived the elastic energy’s first- and second-order derivatives for the
HEM solver and provided the concrete formulations in the supplemen-
ary material. In some situations, an inexact Hessian matrix may reduce
he time cost of the solver’s convergence, due to the high overhead of
ssembling the exact one. This alternative, which we called the pseudo
essian matrix, is also given in the appendix. Moreover, when facing
ith ill-conditioned Hessian matrix, a diagonal regularizer is added to
ake the matrix positive definite.

.2. Collision handling

We utilize the point-to-surface intersection detection scheme for
CD through sampling strategies adjusted to specific scenarios. For
ollision detection between shells and colliders with simple geometry
hapes, such as spheres, cylinders, or planes, the midsurface is uni-
ormly sampled. As for the collision detection with colliders possessing
omplex shapes, we sample the collider surface, or directly take the
urface vertices as the sample points, if the collider has a triangu-
ar mesh. For the thin-shell self-collision, we iteratively sample each
ermite patch and perform CCD on sampling points against all the
ther surfaces. Penetrations occurring within a single surface can be
andled by subdividing the current surface with the scheme illustrated
n Fig. 9(b) and treating the 4 subdivided regions recursively.

After we have examined all the collision primitive pairs and got the
ist of earliest simultaneous collision pairs, we roll back to the collision
oment. This prohibits penetration throughout the simulation. Then
e follow the impulse-based method [75] to compute the simultane-
us collision responses according to the conservation of momentum.
sing a zero restitution coefficient [2], we model each collision as

he momentum change at the collision point, which is formulated as a
inear constraint of generalized velocities. Then we handle the multiple
ollisions in one batch by solving the linear system of constraints for the
mpulses in a least-square sense and update velocities. When friction
xists, we compute the applied frictional impulses on the tangent
irection of collision points according to the Column cone and solve
or the normal and tangent updates together.

To avoid the resolved collision being detected at the beginning of
he next round of CCD, we additionally update the displacement by
ushing out each collision point a subtle distance opposite the normal
irection. This is also modeled as a constraint linear to the generalized
ositions. Then the position constraints are resolved in a similar way
6

fter the velocity updates. t
.3. Rendering

In a ray-tracing rendering framework, the most expensive part is
o test whether, where, and when a ray intersects the object. Tradi-
ional subdivision-based methods own their advantage in robustness
ut often fall in efficiency. We implement our ray-tracing algorithm
n the rendering system of pbrt-v4 [76] using our algorithm of static
ay-patch intersection detection. Our enhancements to the subdivision-
ased algorithm have significantly accelerated performance, achieving
n approximate 10-fold increase in speed compared to theoretically
uadratic-convergent algorithms, such as Bézier clipping, as shown in
able 1 and Fig. 10. Newton’s method tends to converge efficiently
hen applied to patches of low curvature. For example, the conver-
ence percentages for each of the subdivisions in the three scenes
epicted in Fig. 10 are 99%, 54%, and 34%, respectively. Additionally,
ewton’s method is adept at identifying the nearest intersection point.
onsequently, the specially designed subdivision scheme can effectively
rune much of the division tree.

. Experimental results

We design a wide range of validation tests and simulation ex-
eriments to evaluate the validity, fidelity, and effectiveness of our
ramework from various aspects. All of the experiments are run on a
.50 GHz 13th Gen Intel® Core™ i5-13600KF desktop with 32 GB RAM.
he parameters and statistics are reported in Table 2.

In comparison with linear FEMs, we include two different bending
ormulas: the hinge energy proposed by Grinspun et al. [3] and the mid-
dge bending (the discrete Koiter’s shell energy) [22,70] implemented
n LibShell [77]. It should be noted that the latter, along with the energy
odel employed in BHEM, directly originates from the continuous

quations of the first and second fundamental forms. For the sake of
airness, we have standardized the linear search algorithm in each
ethod.

.1. Validation

rinkled sheets. We first validate the accuracy and convergence of our
HEM method with a standard stretched sheet experiment, which was
irst proposed by the pioneering work of Cerda et al. [78] and later
sed in both physical engineering [79] and computer graphics [18]
ommunity as well. In this experiment, a rectangular thin sheet is
ulled apart from its two ends. Due to the high Poisson ratio, the sheet
ompresses in the perpendicular (vertical) and generates horizontal
rinkles.

We simulate this problem with the same physical parameter settings
s in the work of Chen et al. [18], which are 0.25m × 0.1m for size,
.1mm for thickness, Poisson ratio 𝜈 = 0.5 and Young’s modulus

= 1MPa. According to the conclusion of Chen et al. [18], the
riangular finite-element-based method needs a high resolution of up
o tens of thousands of vertices to generate correct wrinkle patterns in
his example. As shown in Fig. 12, the BHEM starts to give apparent
rinkles at a resolution of merely 102 patches (1452 DoFs in total). As

he resolution increases over 152, the difference in the shape of wrinkles
s already imperceptible.

We further verify this observation through a quantitative exper-
ment that measures the peak amplitude of wrinkles produced with
ncreased resolution. According to the physical experiment results re-
orted by Wang et al. [79], the sheet is expected to produce wrinkles
ith a peak amplitude of 0.35mm. The curve illustrated in Fig. 16

hows that our BHEM can stably yield 0.34mm peak amplitude when
he simulation resolution is greater than 302 patches (11.5k DoFs in
otal). While the peak amplitude can only reach 0.31mm for the linear
EM simulated on a triangular mesh with 130k vertices (390k DoFs in

otal).
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Fig. 1. A sheet of square cloth (30 × 30 patches) drapes on a ball, exhibiting rich
wrinkle patterns in the process of reaching a steady state.

Fig. 2. A sheet of square cloth (30 × 30 patches) drapes on an armadillo model, where
the sharp edges of the model are reflected by the cloth deformation.

Fig. 3. A sheet of cloth (30 × 30 patches) falls on a needle array and then gets pulled
away from aside. The bulges on the cloth surface are pushed by the needle tips. This
sharp geometry deformation caused by the tiny contact demonstrates well the fine
resolution of the patch interpolation.

Fig. 4. The folding process of an oriental paper parasol (280 × 5 patches), simulated by
jointly controlling nodal positions and their first-order derivatives. Bending and subtle
wrinkles along the ribs can be observed.

Fig. 5. A surface that is homeomorphic to a rectangle is embedded into a Cartesian
grid, of which grid cells are taken as patches. Each BH patch corresponds to an
axis-aligned rectangle in the parameter space.

In Fig. 13, we also demonstrate the efficiency of BHEM by com-
paring its convergence curves with those of randomly triangulated thin
shells by aforementioned linear FEMs at various resolutions. Generally
speaking, linear FEM solvers require fewer iterations but significantly
more time to achieve a converged solution. This is probably because
the BH system mixes DoFs of different orders, which, in the meanwhile,
allows the BH surface to present similar high-frequency visual effects
with fewer DoFs.

Draped cloth. We conduct a set of comparative experiments to further
demonstrate the superiority of our geometric discretization format. In
7

Fig. 6. Some complex surfaces can be divided into BH patches with the help of
continuity boundary conditions.

Fig. 7. A hollow cylindrical shell (20 × 20 patches) deforms severely under the
gradually increased compression. Initially, the cylinder is mounted on the ground; as
the wood plank gets pushed down, the deformation of the cylinder manifests locally at
first; at some point, the unshaping takes a sudden change; further compression produces
severe deformation and high degree of self contact.

this scenario, a square piece of cloth, with its four corners moved
inward a bit and clamped, drapes from a flattened configuration under
the influence of gravity. In Fig. 14, we demonstrate the results obtained
with our BHEM and LibShell at varying discretization resolutions re-
spectively. The comparison shows that BHEM is capable of producing
more detailed wrinkles with a comparable number of DoFs (11.5k
DoFs for 302-patch BH surface, and 12k DoFs for 4k-vertex FE surface).
Additionally, at low discretization resolutions, BHEM (432 DoFs for 52

patches) tens to yield an over-smoothed surface, whereas LibShell (1.5k
DoFs for 500 vertices) generates artificial wrinkles, as illustrated in the
first column. At high discretization resolutions, although the quality
produced by LibShell improved, however, BHEM can achieve similar
quality with only 11.5k DoFs (302 BH patches), thereby requiring
significantly fewer iterations and less time to converge, as depicted
in Fig. 15. The convergence speed of different methods is provided
in Fig. 15, including results from the linear FEM with hinge-based
bending.

Parametric surface rendering. Our proposed ray-surface intersection al-
gorithm would be regarded as a substantial enrichment for the current
off-the-shell ray-tracing rendering engine. By simply substituting the
current ray-polygon intersection detection module in pbrt-v4 [76] with
our algorithm, pbrt-v4 can realize parametric surface ray-tracing ren-
dering with good visual effects, as shown in the rightmost columns of
Figs. 8 and 11. The other columns are the rendering results for the poly-
gon meshes generated from the parametric surface subdivision. From
left to right, the subdivision level gradually increases. A parametric
surface naturally processes continuous normal vectors on its surface.
Discontinuities in surface normal vectors can result in visual artifacts,
such as abnormal reflections on the teapot and cluttered caustics on the
ground.

2D cantilever beam and 3D lateral buckling. We further validate our
method by comparing two experiments with their theoretical solu-
tions [80]. The first is the cantilever beam experiment, where a beam
is fixed at one end and bent under gravity. Its master curve uniquely
determines the aspect ratio 𝐻∕𝑊 of the cantilever beam under equi-
librium as a function of the dimensionless parameter 𝛤 ∗ = 12(1 −
𝜈2)𝜌𝑔𝐿3∕𝑌 ℎ2. The second is the lateral buckling experiment with the
plate lying vertically in the (𝑥, 𝑧) plane. We let the plate hang and sag
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Fig. 8. Parametric surface rendering. A Utah teapot represented in bicubic patches is rendered by our scheme, shown in (e). The teapots rendered by traditional methods with
each patch triangulated into 4/16/64/256 facets are shown in (a)/(b)/(c)/(d), where artifacts can be seen at the mouth and silhouettes of the teapots, especially for coarse mesh
decimation.
Fig. 9. Ray surface intersection subdivide schemes. Left: splitting at midpoint; Right:
abandoning the neighborhood of intersection point and splitting the rest region.

Fig. 10. Three test cases with only 1 patch for Plane and 10 × 10 patches for Cylinder
and Drape each. The scenes all have the same setting of lights and 16 samples per pixel.

Fig. 11. Parametric surface rendering. The caustic lighting effect amplifies the imper-
fection of the surface, such as the un-smooth surface normal distribution. Fine-grained
caustic rays clutter the ground for the scenarios with low-resolution mesh objects.

Fig. 12. Wrinkled sheets. Sheets of different resolutions buckle under uniaxial stretch-
ing. (a) There appears only one artificial bump on a single patch. (b) No apparent
wrinkle on a shell composed of 5 × 5 patches. (c) A 10 × 10-patch sheet manages to
produce several shallow wrinkles. (d) Clearer wrinkles are produced by a 15 × 15-
patch sheet. (e) Though wrinkles are finer, the difference is subtle compared with the
previous. (f) The wrinkle pattern converges when it is finer than 30 × 30 patches.
8

Fig. 13. Performance curves of wrinkled sheets with respect to different resolutions.
Linear FEM solvers employing hinge-based bending and mid-edge bending are denoted
as hinge and mid-edge, respectively. We use BHEM(p) and BHEM(e) to distinguish
between BHEM solvers that utilize pseudo-Hessian and exact Hessian matrices, respec-
tively. Note that the light-blue solid and dashed lines overlap in the upper subplot. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

under its weight, waiting for a bifurcation to occur. Its master curve
determines when the plate buckles in the third direction as 𝛤 ∗ increases
under a given aspect ratio 𝑤∕𝐿. We conduct our experiments using
methods and physical parameters provided by Romero et al. [80]. The
beam in the cantilever test is discretized in 2 × 100 patches. And the
plate is discretized in 20 patches per meter. Our results perfectly match
the master curves as shown in Figs. 18 and 19.

7.2. Experiments

Locking. As a high-order method, the BHEM formulation alleviates
locking issues remarkably. It does not need any special treatment,
e.g., dynamic remeshing, to get plausible effects, even with very few
degrees of freedom. As shown in the top row of Fig. 20, a squared piece
of cloth, which is composed of 102 patches, is initially pinned at its two
diagonal corners. As the pinning points slide along the boundary, the
cloth can naturally fold down along any direction as illustrated in the
bottom row.

Twisting cloth. Our method allows precise and intuitive control over
the first-order derivatives of an arbitrary point on the surface. In this
example, the center point of a squared piece of cloth is fixed. Its two
first-order partial derivatives (indicated by the red arrows in Fig. 17 are
rotated with a constant speed in the horizontal plane. This prescript
motion results in a persistent wrinkling perpendicular to the first



Computer-Aided Design 174 (2024) 103734X. Ni et al.
Fig. 14. Draped cloth. The top row and bottom row show the results obtained by LibShell and BHEM, respectively. The resolution of the discretized surfaces increases from left to
right. We choose the examples with the highest resolutions and similar plausible wrinkles and test the performance of the solvers under these resolutions. The performance curves
are shown in Fig. 15.
Fig. 15. Performance curves of draped cloth with respect to different resolutions. Same
abbreviations are used as in Fig. 13.

Fig. 16. Statistic of the wrinkle’s peak value. The simulated amplitude increases
with the refinement of the sheet and converges rapidly to a physical real value
(3.5 × 10−1 mm). Results of LibShell with 32k and 130k vertices are plotted in horizontal
dashed lines.

derivative directions and eventually invokes the buckling swirl around
the center. In a pure displacement-based method, a similar result can
only be achieved through prescript at least three nodes’ motion.
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Fig. 17. Twisting cloth (30 × 30 patches). A buckling swirl around the center as
the first-order derivatives (indicated by the red arrows) of the center point rotate
horizontally with a constant speed.

Fig. 18. Comparisons with theoretical solutions on the cantilever test. We simulate
140 𝛤 ∗ values and superimpose the data (red dots) onto the master curve (black line).
Our results perfectly match the master curve.

Fig. 19. Comparisons with theoretical solutions on the lateral buckling test. The master
curve separates two areas colored to indicate whether the plate has buckled in 3D
(turquoise) or lies in 2D (orange). Our results perfectly match the theoretical solution.
(For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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Fig. 20. A thin sheet (10 × 10 patches) with its two diagonal ends fixed bends by
gravity. After reaching a steady state, the fixed points slide smoothly along the opposite
edges without any locking artifacts from discretization. We emphasize that only 10 × 10
patches are used here.

Fig. 21. Hollow cylindrical shells (30 × 30 patches) with different thickness buckles
under the gradually increased axial compression. Inside each shell, there is a rigid
cylindrical mandrel. Its radius differs from that of the shell by 10%.

Cloth draping on objects. Both resting and dynamic contact can be
faithfully detected and resolved within our framework. Two square
sheets of cloth, both of which are composed of 302 patches, drape on a
parametric sphere and a triangular meshed armadillo are demonstrated
in Figs. 1 and 2 respectively. Rich deformation details due to the
interference from external objects can be observed in the results. Please
see the supplemental video for more visual evidence.

Cloth sliding over needles. In this example, we drop a sheet of cloth
on a needle array and then pull it away from aside. The subtle bulges
on the cloth surface, which are pushed out by the needle tips, can be
clearly observed in Fig. 3. In the supplemental video, we can easily
notice that when pulling the cloth over the needle array, the cloth
exhibits natural choppy movement around the needle tips due to the
contact interaction. These two points verify that our BHEM formulation
and collision detection algorithm can handle sharp geometry features
robustly.

Folding an oriental paper parasol. By jointly controlling node positions
and their first-order derivatives, we can mimic the folding process of
an oriental paper parasol driven by the motion of its rib as displayed
in Fig. 4.

Cylindrical shell buckling. In Fig. 7, a hollow cylindrical shell severely
buckles under the gradually increased compression is simulated with
our method. When there is an inner mandrel, local buckles can no
longer grow unrestrained because their radial displacements are ar-
rested by the mandrel. Consequently, as illustrated in Fig. 21, each
buckle folds along its central ridge, orthogonal to both the pressure
and the axis of the cylinder. Under compression, more buckles emerge,
forming a densely packed, diamond-like pattern across the entire cylin-
der. Given that the bending stiffness of a shell is proportional to the
cube of its thickness, thicker shells display more regular, rapid, and
stable buckling development, as shown in the accompanying video.
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Table 1
Rendering performance. The three algorithms from left to right are: our subdivision-
based algorithm that splits only at the midpoint, our algorithm with Newton’s method,
and Bézier clipping.

Subdivision Subdivision (Opt.) Bézier clipping

Plane 58.3 s 4.5 s 6.0 s
Cylinder 91.6 s 9.7 s 14.2 s
Drape 86.0 s 14.8 s 33.9 s

Furthermore, our experiment setup ensures a constant ratio between
the mandrel radius and the shell thickness, thereby keeping the annular
gap unchanged. As depicted in Fig. 21, the size of the buckle remains
consistent regardless of variations in thickness, which aligns well with
the conclusion presented in Seffen et al. [81].

8. Conclusions and discussions

In this study, we propose a new computational framework de-
signed for elastodynamic simulation of thin-shell structures. The central
piece of our framework is a high-order finite element formulation
equipped with an implicit Euler solver. This formulation, based on bicu-
bic Hermite interpolation, naturally ensures conforming 1 continuity.
Capitalizing on the advancements in surface modeling and rendering,
we have crafted an intersection detection paradigm that is custom-
tailored for bicubic Hermite surfaces. This unified approach empowers
us to achieve high-fidelity CCD and rendering without resorting to
any form of auxiliary tessellation mesh. The significance of research
on BHEM spans various applications: (1) facilitating a seamless flow
of information throughout the design-to-production workflow (CAD,
CAE, and CAM), where geometric consistency with IGA is needed, (2)
enhancing inverse optimization and control, where fewer DoFs (com-
pact representation) aid in fast convergence, (3) enabling locking-free
simulation with rigorous strain limiting, which necessitates sufficient
DoFs of each vertex, and (4) advancing development of conforming
contact solver, where accurately capturing contact regions is essential.

Rotation dependence. The basis functions for tensor-product bicubic
Hermite splines are (𝜉1)𝑖(𝜉2)𝑗 (0 ≤ 𝑖, 𝑗 ≤ 3), which include a complete
set of rotation-free basis functions, specifically (𝜉1)𝑖(𝜉2)𝑗 (0 ≤ 𝑖+ 𝑗 ≤ 3).
Despite that the geometric representation of BHE is affected by the
directions of parameterization, the differences only exist in several
high-order bases.

Comparisons with relevant methods. The BHEM achieves an impressive
balance between computational efficiency and geometric continuity,
compared to relevant methods. For instance, subdivision surfaces also
ensure 1 continuity but do not interpolate control points, resulting in
difficulties of enforcing boundary conditions and detecting collisions.
Specifically, subdivision surfaces utilizing Loop’s scheme [8] employ
quartic shape functions, which demand more computation than ours.
Meanwhile, those using Catmull–Clark’s scheme [30] generate bicubic
B-splines like ours, but their values and derivatives of the shape func-
tions cannot be evaluated analytically. In the case of DG-FEM, although
it employs lower-order (quadratic) shape functions, it necessitates an
additional penalty between each pair of adjacent elements, which is
expected to quickly offset the extra computational cost of evaluating
higher-order polynomials as mesh size increases. Moreover, for the
same number of DoFs, DG-FEM has been observed to be less accurate
than the FEMs used in CG [32].

Limitations and future work. Some challenges remain unresolved and
await deeper investigation. First, in order to maintain 1-continuous
everywhere, our current framework is limited to working with sur-
faces that are homeomorphic to squares, cylinders, or tori. For more
complex shapes (e.g., spheres), special treatments, such as integrating
hinge-based bending energy, are still necessary around 0 seams and
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Table 2
Here we list the parameters and the time consumed in each example, including the degrees of freedom, the total number of nonzero elements in the BHEM system matrix, the
total number of sampling points on the external collider, the properties of the cloth (Young’s Modulus 𝑌 [Pa], Poisson’s ratio 𝜈 and thickness ℎ [mm], mass density 𝜌 [103kg∕m3]),

ayleigh damping coefficient 𝛼, time step 𝛥𝑡 [ms], time consumed in one integration step 𝑡int [s], in one CCD step 𝑡obj [s], and whether we detect self-collision (SC, ‘–’ means that
CD has not been performed in this example).
Figure Example #DoFs #NNZs #SPs 𝑌 𝜈 ℎ 𝜌 𝛼 𝛥𝑡 𝑡int 𝑡obj SC

12 Wrinkleda – – – 1 × 106 0.5 0.1 0.93 – – 63.0 – –
14 Drapeda – – – 1 × 105 0.3 1 0.93 0 10 6.01 – –
17 Twisting 1.15 × 104 1.19 × 106 – 1 × 104 0.3 1 0.2 50 2 0.20 – –
20 Lockinga – – – 1 × 104 0.3 1 0.2 2 2 3.38 4.37 Yes
1 Ball 1.15 × 104 1.17 × 106 – 1 × 105 0.3 0.1 0.2 2.5 2 4.80 0.0023 No
2 Armadillo 1.15 × 104 1.19 × 106 2.8k 8.21 × 105 0.243 0.32 0.4726 2.5 1 2.90 1.84 No
3 Needles 1.15 × 104 1.19 × 106 3.6k 1 × 104 0.3 0.1 0.2 5 2 5.05 26.66 Yes
4 Umbrella 2.02 × 104 1.76 × 106 – 1 × 106 0.5 0.1 0.93 5 2 12.47 – –
7 Can 5.3 × 103 4.97 × 105 – 1 × 108 0.3 2 2.7 5 2 4.55 – –
21 Cansa 1.15 × 104 1.13 × 106 – 1 × 109 0.47 – 1.4 5 0.04 5.29 0.0024 No

a The statistics is obtained by 30 × 30-patch shells for Wrinkled and Draped, 20 × 20-patch shells for Locking, and 1mm-thick shell for Cans.
d-
points. Second, while Hermite interpolation excels in depicting complex
characteristics like wrinkles or folds in cloth motion, it encounters
difficulties when addressing plastic deformation and impact dynamics.
The high-order formulation of Hermite interpolation exacerbates the
inherent non-linearity and non-smoothness of these tasks, which need
sophisticated modeling and analysis. Besides, this paper only intro-
duces an algorithm of ray-patch intersection detection, which alone
is insufficient for achieving non-penetration in CCD. To overcome this
limitation, we intend to expand our algorithm to include patch–patch
intersection detection. In addition, as our current collision-resolving
scheme struggles with intricate contact scenarios like tying ribbons into
a reef knot, we view the integration of Incremental Potential Contact
(IPC) as a natural and significant follow-up step.
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A MATHEMATICAL TOOLS

A.1 Bicubic Hermite Interpolation
Thoroughly, the midsurface in BHEM is parameterized by

𝒙 (𝜉1, 𝜉2) =
∑︁

𝑝,𝑞,𝑟,𝑠∈{0,1}
𝑤𝑝𝑞,𝑟𝑠 (𝜃1, 𝜃2)𝒙𝑝𝑞,𝑟𝑠 , (S1)

in which 𝒙𝑝𝑞,𝑟𝑠 represents 4 generalized coordinates of node 𝒙𝑝𝑞 ,
with 𝑟 and 𝑠 denoting the order of partial derivatives w.r.t. 𝜉1 and 𝜉2,
respectively. See Fig. 5 of the main text. The weight function𝑤𝑝𝑞,𝑟𝑠

takes the form of

𝑤𝑝𝑞,𝑟𝑠 (𝜃1, 𝜃2) = 𝑤𝑝,𝑟 (𝜃1)𝑤𝑞,𝑠 (𝜃2), (S2)

with 𝜃𝛼 ∈ [0, 1] defined as (𝜉𝛼 − 𝜉𝛼min)/Δ𝜉
𝛼 .

As written in Eq. (S2), bicubic Hermite interpolation indicates
using a cubic basis function in each dimension of the parameter
space. To be specific,𝑤𝑝,𝑟 is defined as follows:

𝑤𝑝,𝑟 (𝜃 ) =


𝑓 (𝜃 ), 𝑝 = 0 ∧ 𝑟 = 0, (S3a)
𝑓 (1 − 𝜃 ), 𝑝 = 1 ∧ 𝑟 = 0, (S3b)
𝑔(𝜃 ), 𝑝 = 0 ∧ 𝑟 = 1, (S3c)
−𝑔(1 − 𝜃 ), 𝑝 = 1 ∧ 𝑟 = 1, (S3d)

where 𝑓 (𝜃 ) = 2𝜃3 − 3𝜃2 + 1 and 𝑔(𝜃 ) = 𝜃3 − 2𝜃2 + 𝜃 hold. 𝑤𝑞,𝑠 is
defined similarly by replacing indices.
Furthermore, taking the derivative of Eq. (S1) yields

𝒂1 (𝜉1, 𝜉2) =
∑︁

𝑝,𝑞,𝑟,𝑠∈{0,1}

1
Δ𝜉1𝑤

′
𝑝,𝑟 (𝜃1)𝑤𝑞,𝑠 (𝜃2) 𝒙𝑝𝑞,𝑟𝑠 , (S4)

𝒂2 (𝜉1, 𝜉2) =
∑︁

𝑝,𝑞,𝑟,𝑠∈{0,1}

1
Δ𝜉2𝑤𝑝,𝑟 (𝜃1)𝑤 ′

𝑞,𝑠 (𝜃2) 𝒙𝑝𝑞,𝑟𝑠 , (S5)

where

𝑤 ′
𝑝,𝑟 (𝜃 ) =


𝑓 ′ (𝜃 ), 𝑝 = 0 ∧ 𝑟 = 0, (S6a)
−𝑓 ′ (1 − 𝜃 ), 𝑝 = 1 ∧ 𝑟 = 0, (S6b)
𝑔′ (𝜃 ), 𝑝 = 0 ∧ 𝑟 = 1, (S6c)
𝑔′ (1 − 𝜃 ), 𝑝 = 1 ∧ 𝑟 = 1, (S6d)

with 𝑓 ′ (𝜃 ) = 6𝜃2 − 6𝜃 and 𝑔′ (𝜃 ) = 3𝜃2 − 4𝜃 + 1 holding.𝑤 ′
𝑞,𝑠 (𝜃 ) can

be still formalized by replacing indices.
It is clear that all the following equations hold: 𝑓 (0) = 1, 𝑓 (1) = 0,

𝑔(0) = 0, 𝑔(1) = 0, 𝑓 ′ (0) = 0, 𝑓 ′ (1) = 0, 𝑔′ (0) = 1, and 𝑔′ (1) = 0,
which means that the values of 𝒙 , 𝒂1, and 𝒂2 on a common edge are
merely related to the sampled values at the two end nodes of the
edge. This implies C1-smoothness on the whole surface — the inter-
polation function itself and its first-order partial derivatives remain
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continuous across cells, while the second-order partial derivatives
come to discontinuity of first kind only at the common edges.

A.2 Gauss–LegendreQuadrature

Fig. S1. Quadrature points in a cell.

Any two-dimensional integral that takes the form of

𝐼 =

∫ 𝜉2
max

𝜉2
min

∫ 𝜉1
max

𝜉1
min

𝑓 (𝜉1, 𝜉2) d𝜉1d𝜉2, (S7)

can be computed approximately using the summation of 𝑛 sampled
points that

𝐼 ≈
𝑛∑︁
𝑖=1

𝑤𝑖 𝑓 (𝜉1
𝑖 , 𝜉

2
𝑖 ). (S8)

We pick 𝑛 = 16 in our framework, with the quadrature points
arranged by 4 × 4 in a single cell. As shown in Fig. S1, the vertical
dashed lines correspond to

𝜃1 =
𝜉1

min + 𝜉1
max

2
± Δ𝜉1

2

√︄
3
7
± 2

7

√︂
6
5
, (S9)

respectively, and the horizontal dashed lines correspond to

𝜃2 =
𝜉2

min + 𝜉2
max

2
± Δ𝜉2

2

√︄
3
7
± 2

7

√︂
6
5
, (S10)

respectively. The inside vertical lines equip a weight factor of (18 +√
30)Δ𝜉1/72, while the outside ones equip a weight factor of (18 −√
30)Δ𝜉1/72. The inside horizontal lines equip a weight factor of

(18 +
√

30)Δ𝜉2/72, while the outside ones equip a weight factor of
(18 −

√
30)Δ𝜉2/72. The final weight𝑤𝑖 of each point is the product

of the two weights of the vertical and horizontal lines it lies on.

B DERIVATIVES OF THE ELASTIC ENERGY
We bypass the medium of deformation gradients and compute the
first- and second-order partial derivatives of 𝑉e w.r.t. nodal degrees
of freedom {𝒒𝐼 } directly.
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B.1 The First-Order Derivatives (Force)
With the total elastic potential energy defined by𝑉e =

∬
Ω̄ V̄e dΩ̄, ac-

cording to Eq. (11) in the main text, the first-order partial derivatives
of the elastic energy are given by

𝜕𝑉e
𝜕𝒒𝐼

=

∬
Ω̄

𝜕V̄e
𝜕𝒒𝐼

dΩ̄

=

∬
𝜔

𝜕V̄e
𝜕𝒒𝐼

√
𝑎 d𝜉1d𝜉2

=

∬
𝜔

(
𝜏
𝜕𝑎𝛼𝛽

𝜕𝒒𝐼
𝐴𝛾𝛿 + 1

3
𝜏3 𝜕𝑏𝛼𝛽

𝜕𝒒𝐼
𝐵𝛾𝛿

)
𝐻𝛼𝛽𝛾𝛿

√
𝑎 d𝜉1d𝜉2, (S11)

with partial derivatives of 𝑎𝛼𝛽 and 𝑏𝛼𝛽 are calculated by

𝜕𝑎𝛼𝛽

𝜕𝒒𝐼
=𝛷𝐼

,𝛼𝒂𝛽 +𝛷𝐼
,𝛽
𝒂𝛼 , (S12)

𝜕𝑏𝛼𝛽

𝜕𝒒𝐼
=𝛷𝐼

,𝛼𝛽
𝒂3 +

1
√
𝑎

(
𝛷𝐼
,1𝒂2 × 𝒂𝛼,𝛽 +𝛷𝐼

,2𝒂𝛼,𝛽 × 𝒂1

− 𝒂𝛼,𝛽 · 𝒂3 (𝛷𝐼
,1𝒂2 × 𝒂3 +𝛷𝐼

,2𝒂3 × 𝒂1)
)
. (S13)

In order to facilitate numerical calculation, we rewrite Eq. (S11)
in a matrix form using Voigt notation as

𝜕𝑉e
𝜕𝒒𝐼

=

∬
𝜔

(
𝜏

(
𝜕𝜶

𝜕𝒒𝐼

)T
𝑯𝜶 + 1

12
𝜏3

(
𝜕𝜷

𝜕𝒒𝐼

)T
𝑯𝜷

)
√
𝑎 d𝜉1d𝜉2, (S14)

where 𝑯 = (𝐻 𝑖 𝑗 )3×3 is a square matrix, and 𝜶 = (𝛼𝑖 )3×1 and 𝜷 =

(𝛽𝑖 )3×1 are column vectors. It should be noted that a mixed layout
is used here — first-order partial derivatives are always written as
column vectors. Considering the symmetry of the quantities, the
matrix and vectors in this integral can be written as

𝑯 =

( (𝜆 + 2𝜇 ) (𝑎11 )2 𝜆𝑎11𝑎22 + 2𝜇 (𝑎12 )2 (𝜆 + 2𝜇 )𝑎11𝑎12

(𝜆 + 2𝜇 ) (𝑎22 )2 (𝜆 + 2𝜇 )𝑎12𝑎22

sym. (𝜆 + 𝜇 ) (𝑎12 )2 + 𝜇𝑎11𝑎22

)
,

(S15)

𝜶 =
(
𝐴11 𝐴22 2𝐴12

)T , (S16)

𝜷 = 2
(
𝐵11 𝐵22 2𝐵12

)T , (S17)
𝜕𝜶

𝜕𝒒𝐼
=

1
2

(
𝜕𝑎11
𝜕𝒒𝐼

𝜕𝑎22
𝜕𝒒𝐼

2 𝜕𝑎12
𝜕𝒒𝐼

)T
, (S18)

𝜕𝜷

𝜕𝒒𝐼
=

(
𝜕𝑏11
𝜕𝒒𝐼

𝜕𝑏22
𝜕𝒒𝐼

2 𝜕𝑏12
𝜕𝒒𝐼

)T
. (S19)

B.2 The Second-Order Derivatives (Hessian)
The Hessian matrix is given by

𝜕2𝑉e
𝜕𝒒 𝐽 𝜕𝒒𝐼

=

∬
Ω̄

𝜕2V̄e
𝜕𝒒 𝐽 𝜕𝒒𝐼

dΩ̄

=

∬
𝜔

(
𝜏 𝑮1 +

1
12

𝜏3 𝑮2

) √
𝑎 d𝜉1d𝜉2, (S20)

in which the following equations hold:

𝑮1 =

(
𝜕𝜶

𝜕𝒒𝐼

)T
𝑯

(
𝜕𝜶

𝜕𝒒 𝐽

)
+

3∑︁
𝑖=1

3∑︁
𝑗=1

𝜕2𝛼𝑖
𝜕𝒒 𝐽 𝜕𝒒𝐼

𝐻 𝑖 𝑗𝛼 𝑗 , (S21)

𝑮2 =

(
𝜕𝜷

𝜕𝒒𝐼

)T
𝑯

(
𝜕𝜷

𝜕𝒒 𝐽

)
+

3∑︁
𝑖=1

3∑︁
𝑗=1

𝜕2𝛽𝑖
𝜕𝒒 𝐽 𝜕𝒒𝐼

𝐻 𝑖 𝑗 𝛽 𝑗 . (S22)

Therefore, the remaining work is to calculate 𝜕2𝛼𝑖/𝜕𝒒 𝐽 𝜕𝒒𝐼 and
𝜕2𝛽𝑖/𝜕𝒒 𝐽 𝜕𝒒𝐼 . The concrete form of the former can be easily deduced
as

𝜕2𝛼1
𝜕𝒒 𝐽 𝜕𝒒𝐼

= 𝛷𝐼
,1𝛷

𝐽
,1𝑰 , (S23)

𝜕2𝛼2
𝜕𝒒 𝐽 𝜕𝒒𝐼

= 𝛷𝐼
,2𝛷

𝐽
,2𝑰 , (S24)

𝜕2𝛼3
𝜕𝒒 𝐽 𝜕𝒒𝐼

=

(
𝛷𝐼
,1𝛷

𝐽
,2 +𝛷

𝐼
,2𝛷

𝐽
,1

)
𝑰 , (S25)

while it takes some time to compute the latter, which satisfies

2
𝜕2𝐵𝛼𝛽

𝜕𝒒 𝐽 𝜕𝒒𝐼
=
𝜕2𝑏𝛼𝛽

𝜕𝒒 𝐽 𝜕𝒒𝐼

=𝛷𝐼
,𝛼𝛽

𝜕𝒂3
𝜕𝒒 𝐽

+𝛷 𝐽

,𝛼𝛽

(
𝜕𝒂3
𝜕𝒒𝐼

)T
+𝛷𝐼

,1𝛷
𝐽
,1𝑫

11

+𝛷𝐼
,2𝛷

𝐽
,2𝑫

22 +𝛷𝐼
,1𝛷

𝐽
,2𝑫

12 +𝛷𝐼
,2𝛷

𝐽
,1𝑫

21, (S26)

in which coefficients of the first-order terms are

𝜕𝒂3
𝜕𝒒 𝐽

=
1
√
𝑎

(
−𝛷 𝐽

,1 [𝒂2] +𝛷 𝐽
,2 [𝒂1] − 𝒂3 ⊗ (𝛷 𝐽

,1𝒕1 +𝛷
𝐽
,2𝒕2)

)
, (S27)

𝜕𝒂3
𝜕𝒒𝐼

=
1
√
𝑎

(
−𝛷𝐼

,1 [𝒂2] +𝛷𝐼
,2 [𝒂1] − 𝒂3 ⊗ (𝛷𝐼

,1𝒕1 +𝛷
𝐼
,2𝒕2)

)
, (S28)

and coefficients of the second-order terms are respectively calculated
by dot products of 𝒂𝛼,𝛽 with 𝜕2𝒂3/𝜕𝒂12, 𝜕2𝒂3/𝜕𝒂22, 𝜕2𝒂3/𝜕𝒂2𝜕𝒂1,
and 𝜕2𝒂3/𝜕𝒂1𝜕𝒂2. For calculation, we provide relatively simple for-
mulae as follows:

𝑫11 =
1
𝑎

(
𝛽𝛼𝛽 (3𝒕1 ⊗ 𝒕1 + 𝒂2 ⊗ 𝒂2 − 𝑎22𝑰 )

−𝒔2 ⊗ 𝒕1 − 𝒕1 ⊗ 𝒔2) , (S29)

𝑫22 =
1
𝑎

(
𝛽𝛼𝛽 (3𝒕2 ⊗ 𝒕2 + 𝒂1 ⊗ 𝒂1 − 𝑎11𝑰 )

−𝒔1 ⊗ 𝒕2 − 𝒕2 ⊗ 𝒔1) , (S30)

𝑫12 =
1
𝑎

(
𝛽𝛼𝛽 (3𝒕1 ⊗ 𝒕2 − 2𝒂1 ⊗ 𝒂2 + 𝒂2 ⊗ 𝒂1 + 𝑎12𝑰 )

−𝒔2 ⊗ 𝒕2 − 𝒕1 ⊗ 𝒔1 −
√
𝑎[𝒂𝛼,𝛽 ]

)
, (S31)

𝑫21 =
1
𝑎

(
𝛽𝛼𝛽 (3𝒕2 ⊗ 𝒕1 − 2𝒂2 ⊗ 𝒂1 + 𝒂1 ⊗ 𝒂2 + 𝑎12𝑰 )

−𝒔1 ⊗ 𝒕1 − 𝒕2 ⊗ 𝒔2 +
√
𝑎[𝒂𝛼,𝛽 ]

)
, (S32)
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where 𝑡1, 𝑡2, 𝑠1, and 𝑠2 are defined as

𝒕1 = 𝒂2 × 𝒂3, (S33)
𝒕2 = 𝒂3 × 𝒂1, (S34)
𝒔1 = 𝒂𝛼,𝛽 × 𝒂1, (S35)
𝒔2 = 𝒂2 × 𝒂𝛼,𝛽 . (S36)

Here we use [·] to represent the cross product matrix of a vector,
which is defined as©«

𝑣1
𝑣2
𝑣3

ª®¬
 =

©«
0 −𝑣3 𝑣2
𝑣3 0 −𝑣1
−𝑣2 𝑣1 0

ª®¬ . (S37)

The pseudo Hessian. In the calculation of the Hessian matrix, the
term 𝜕2𝛽𝑖/𝜕𝒒 𝐽 𝜕𝒒𝐼 takes up the most time. Thanks to the low magni-
tude of this term, we can subtract it to construct an inexact Hessian
matrix, which significantly reduces the time consumption per step.
Note that an inexact Hessian in general shows better positiveness
than its exact version, and thus it may also reduce the number of
iterations in certain cases.
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