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Fig. 1. Our new GARM-LS framework allows for highly detailed fluid simulation with surface tension on a relatively coarse grid. (Far Left) Rain drops falling
into the pond. (Middle Left) Flow from a breaking dam. (Middle Right) A water ball falling through a Galton board. (Far Right) Splashes from a collision of two
droplets.

This paper presents a novel level-set method that combines gradient aug-
mentation and reference mapping to enable high-fidelity interface tracking
and surface tension flow simulation, preserving small-scale volumes and
interface features comparable to the grid size. At the center of our approach
is a novel reference-map algorithm to concurrently convect level-set values
and gradients, both of which are crucial for reconstructing a dynamic surface
exhibiting small-scale volumes. In addition, we develop a full pipeline for the
new level-set scheme by incorporating a novel extrapolation algorithm and
an enhanced reinitialization procedure into our reference-map method. We
test our algorithm by simulating complex surface tension flow phenomena
such as raindrop collision, merging, and splashing. We also showcase the
efficacy of our approach by performing validation tests and comparing it to
a broad range of existing level-set algorithms.
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1 INTRODUCTION
Level-set methods play a fundamental role in simulating free-surface
flow. By representing the fluid volume with a signed distance func-
tion, level-set methods can simultaneously capture the fluid’s topo-
logical transition and interfacial dynamics on a background grid.
However, traditional level-set methods suffer from two inherent
weaknesses in representing and preserving small features. When a
fluid volume gets small, especially when the feature size is compara-
ble to the grid size, a traditional level-set function cannot accurately
characterize its local geometry due to the linear assumption of the
signed distance within a cell. On the other hand, there is no mech-
anistic guarantee that a level set can preserve its volume, either
locally or globally, when advecting in a divergence-free velocity
field. Small volumes, such as droplets and thin sheets, smear out
quickly due to this inherent volume loss during advection.
The fluid simulation community has made progress in solving

these two problems on different fronts. For one, high-resolution
level-set surface tracking is combined with a low-resolution fluid
solver and filters (e.g., see [Bojsen-Hansen andWojtan 2013; Goldade
et al. 2016; Kim et al. 2009]) to simulate detailed interface dynamics at
an affordable cost. For another, a level set is enhanced by high-order
techniques such as additional gradient fields [Nave et al. 2010] or
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local polynomials [Saye 2014; Song et al. 2005] to track and preserve
its volume in a variational way. Moreover, a level set is coupled
with or even locally replaced by other geometric representations to
characterize small-scale features around its interface. Examples of
these representations include particles [Enright et al. 2002a, 2005;
Losasso et al. 2004], meshes [Wojtan et al. 2011, 2009], and volume
of fluid (VOF) [Chentanez and Müller 2014; Sussman and Puckett
2000]. Despite these inspiring progresses that has been made in
computer graphics and computational physics, to the best of our
knowledge, the existing level-set methods still have difficulties in
robustly tracking and preserving very small fluid volumes for a long
period, such as small fluid droplets, thin sheets, and filaments. This
limitation consequently hinders the simulation of many visually
appealing interfacial phenomena observed in our daily life (e.g.,
raindrops splashing on a puddle).

We propose a new high-order level-set method, named GARM-LS
(Gradient-Augmented ReferenceMap for Level Set), to better address
the aforementioned challenges (Fig. 1). Specifically, we intend to
simulate interfacial fluid whose dynamics is governed by small vol-
umes and strong surface tension. Our level-set method can robustly
track abundant small-scale fluid volumes degenerated to the size
of a single grid cell and solve their interfacial physics. Our method
is purely Eulerian, without leveraging any additional Lagrangian
structures to augment material tracking or interface representation.
We showcase the capability of the method by simulating surface
tension flow that exhibits rich interfacial details on a comparatively
small-scale grid resolution. In essence, our level-set method com-
bines two emerging numerical techniques in computational physics
and computer graphics — gradient augmentation and reference maps
— to achieve fourth-order accurate and robust interface tracking
for simulating complex interfacial processes. However, simply in-
tegrating these two cutting-edge techniques into a fluid solver is
insufficient to obtain satisfactory simulation results. To address this
issue, we carefully redesigned every key stage of a conventional
level-set pipeline, including advection, interpolation, extrapolation,
and reinitialization, to devise a novel, full-stack interface tracking
framework, ultimately enable highly accurate numerical simulations
of strong surface-tension flow with rich interfacial details.
The overall technical contributions of our method include

• A unified approach that couples the level-set method with
flow-map and gradient-augmentation techniques,
• A novel reference map extrapolation algorithm for plugging
reference maps into narrow-band fluid surfaces, and
• Apractical and robust algorithm to reinitialize gradient-augmented
level sets.

2 RELATED WORK
Level-set methods. Since the pioneering work of Foster and Fed-

kiw [2001], much literature in the graphics community has paid
attention to free-surface fluid simulation, which puts forward high
requirements of surface tracking. The level-set methods [Osher and
Sethian 1988] dominate the existing studies [Enright et al. 2002b;
Hong et al. 2007; Kim et al. 2013; Losasso et al. 2006] from an Euler-
ian perspective. Compared to Lagrangian surface-tracking methods,

such as those used in PIC/FLIP [Zhu and Bridson 2005], MPM [Tam-
pubolon et al. 2017], and PBD [Macklin and Müller 2013], a level-set
method shows its smoothness and consistency, both in tracking and
mesh reconstruction of surfaces, which is required by simulating
interfacial phenomena [Ni et al. 2020; Zheng et al. 2015] driven
by surface tension. However, unlike Lagrangian tracking, level-set
methods may suffer from volume loss. For this reason, there are
schemes proposed to reduce the volume dissipation of the level-set
method. Among these, the attempts to couple it with volume-of-fluid
(VOF) methods [Chentanez andMüller 2014; Mullen et al. 2007; Suss-
man and Puckett 2000] have gained great effect, though numerical
diffusion (resulting from first-order accuracy) and instability remain
as limitations. Combining high-resolution level-set surface tracking
with a lower-resolution grid-based fluid solver [Bojsen-Hansen and
Wojtan 2013; Goldade et al. 2016; Kim et al. 2009] emerged as an
attractive alternative to obtain visually appealing flow details. These
approaches typically relied on employing additional filters to align
the interface tracker and the background solver, and they have no
internal mechanism to ensure high-order convergence. Another
category relies on introducing auxiliary Lagrangian data structures
to correct the interface, including the Lagrangian level-set [Hieber
and Koumoutsakos 2005], Lagrangian VOF [Karnakov et al. 2020],
and many hybrid particle-grid methods [Chen et al. 2021; Hyde
et al. 2020; Saye 2014; Wang et al. 2020]. A typical example is the
particle level set method (PLS) [Enright et al. 2002a, 2005; Losasso
et al. 2004], which tracks abundant particle samples on both sides
of the interface and uses these particles to indicate sides and correct
the local level-set value. These particles, especially the escaped ones,
can be further used to model visually appealing spray dynamics for
large-scale water simulations [Losasso et al. 2008]. These hybrid
representations often require the reconstruction or modification
of the surface with respect to the particles, making it difficult to
preserve a smooth surface, especially when the number of particles
is limited. Last but not least, high-order interpolation and advec-
tion schemes, including CIP [Song et al. 2005], BFECC [Kim et al.
2005], modified MacCormack [Selle et al. 2008], and gradient aug-
mentation [Nave et al. 2010], are developed both in the fields of
computational physics and computer graphics, which internally
improve the tracking ability of a level-set function.

Reference-map methods. Originated from the work of Wiggert
and Wylie [1976], reference-map methods (also known as meth-
ods of characteristic mapping) have been consistently receiving
attention. Semi-Lagrangian advection, which can be regarded as
utilizing characteristic mapping during one time step, first became
popular in atmospheric science [Staniforth and Côté 1991] and
has been widely used in graphics for fluid simulation since Stam
[1999]. Beginning with Hachisuka [2005] and Tessendorf and Pelfrey
[2011], in recent years, many studies have been devoted to long-
term mapping in flows [Nabizadeh et al. 2022; Qu et al. 2019; Sato
et al. 2017]. Its efficacy in tracking and preserving flow features, par-
ticularly vortical structures, and solving solid-fluid interaction has
been demonstrated in the recent literature. However, when it comes
to free-surface fluid, reference-map methods have not fully realized
their potential in facilitating simulations with complex interfacial
physics. In the field of computational physics, Theillard et al. [2019;
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Fig. 2. Comparisons of a 4-Way Dam Break simulation among different interface-tracking methods at frame 50. Our algorithm can make splashes without aid
of particles, while the fluid thin sheet is well preserved.

2021] were inspired by the coupled level-set and reference-map
method (CLSRM) in the context of solid mechanics [Pons et al. 2006].
They only transport the reference map and use it to reconstruct
the level set for simulating fluids, in which volume preservation
is demonstrated in relatively simple scenes. Mercier et al. [2020]
further combined gradient augmentation with characteristic map-
ping to achieve a high-order advection scheme for level sets, but the
omission of extrapolation and reinitialization steps made it unavail-
able for long-period simulations when dramatic topological changes
are present. In the community of computer graphics, Narita and
Ando [2022] leveraged characteristic mapping for free-surface fluid,
employing multiple localized tiled characteristic maps to mitigate
volume loss introduced by frequent global reinitialization. They
demonstrated their method retains small-scale splashes and waves
that are quickly smeared out in a traditional level-set method. Our
method differs from that of Narita and Ando [2022] in terms of its
gradient-augmentation on the reference map, reinitialization, and
extrapolation schemes, establishing a set of high-order algorithms
to address the accuracy issue of characteristic mapping.

3 BACKGROUND
We will briefly review the background of level-set and reference-
map methods in solving free-surface incompressible flow. Table 1
lists physical quantities involved in the following sections.

Free-Surface Flow. We model free-surface flow by solving incom-
pressible Navier–Stokes equations:

𝜌

(
𝜕𝒖

𝜕𝑡
+ 𝒖 · ∇𝒖

)
= −∇𝑝 + 𝜇∇2𝒖 + 𝜌𝒈 − 𝛿𝜕𝛺𝜎𝜅�̂�, (1)

∇ · 𝒖 = 0. (2)

Here, 𝒖 is velocity; 𝑝 is pressure; 𝜌 , 𝜇, 𝒈, and 𝜎 denote density,
dynamic viscosity, gravity, and surface tension, respectively. A gen-
eralized Dirac delta function 𝛿𝜕𝛺 (𝒙) is introduced so that surface
tension exists on the free surface 𝜕𝛺 only.

Level Sets. We use level sets [Osher and Sethian 1988] to track
the fluid surface. The level set function 𝜑 is defined in the entire

Table 1. Notations used through the following sections.

Notation Meaning
𝜌 Density of fluid
𝑝 Pressure of fluid
𝒖 Velocity of fluid
𝜇 Dynamic viscosity of fluid
𝜎 Surface tension coefficient of fluid
Ω Fluid region
𝜕Ω Fluid surface
𝜅 Mean curvature of fluid surface
�̂� Normal of fluid surface
𝜑 Level-set function
𝜉 Reference-map function
B Back-trace mapping function
H Hermite interpolation
L Bi-linear or tri-linear interpolation
Ωa Advection region
Ωe Extended region

domain that satisfies

𝜑 (𝒙, 𝑡)


< 0, 𝒙 ∈ 𝛺 ,
= 0, 𝒙 ∈ 𝜕𝛺 ,
> 0, 𝒙 ∉ 𝛺 ∪ 𝜕𝛺 ,

(3)

where 𝛺 stands for the space occupied by the fluid and 𝜕𝛺 denotes
its boundary. Since 𝜑 equals to 0 if and only if 𝒙 is on 𝜕𝛺 , we state
that the liquid surface is implicitly captured by the 0-level set. For
any point on the surface, �̂� = ∇𝜑/|∇𝜑 | coincides with the unit
(outward) normal vector of the surface,with the mean curvature
calculated by 𝜅 = ∇ · �̂� = ∇ · (∇𝜑/|∇𝜑 |). The reinitialization step
converts 𝜑 into a signed distance field (SDF) by solving an eikonal
equation 𝜕𝜑/𝜕𝜏 + sgn(𝜑) ( |∇𝜑 | − 1) = 0 over pseudo time 𝜏 until a
steady state is reached [Sussman et al. 1994]. A conventional and
robust way for solving this equation is the fast-marching method
(FMM) [Sethian 1996], inspired by Dijkstra’s algorithm.
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Fig. 3. Water ball falling through a Galton board. The first row is simulated with high surface tension while the second row is simulated with low surface
tension. Frame numbers from left to right: 0, 35, 100, 200, 300, 400.

Fig. 4. A gradient-augmented level-set function, with arrows indicating
gradients here, is capable of carrying sub-cell features, in particular small
droplets and thin films.

Gradient-Augmented Level Sets (GALS). A gradient-augmented
level-set method (e.g., see the work of Nave et al. [2010]) maintains
the level set’s gradient ∇𝜑 as an auxiliary field and uses it to en-
hance the level-set function’s local expressiveness with high-order
interpolation. As shown in Fig. 4, with the help of a fourth-order
Hermite interpolation scheme (§A), sub-cell features such as small
droplets and thin films can be preserved during their advection. To
reinitialize a gradient-augmented level set, quasi-Newton methods
[Anumolu and Trujillo 2013; Chopp 2001; Saye 2014] can be used to
update 𝜑 and ∇𝜑 around the interface by iteratively solving for the
nearest point on 𝜕𝛺 .

Reference Maps. As shown in Fig. 5, a reference map 𝝃 (𝒙, 𝑡) :
𝛺𝑡 → 𝛺𝑡0 (𝑡 ≥ 𝑡0) is defined as a vector field indicating the initial
(or reference) location of the fluid element currently occupying po-
sition 𝒙 , with 𝑡0 and 𝑡 denoting the initial and current times. For
conciseness, we rewrite 𝝃 (𝒙, 𝑡) and 𝜑 (𝒙, 𝑡0) as 𝝃 (𝒙) and 𝜑∗ (𝒙) in
short. A reference map can carry out the advection of any mate-
rial points (i.e., D(·)/D𝑡 = 0) by establishing mappings between
locations in different frames based on the flow field.

Level Sets on Reference Maps. The reference map is advected in-
stead of the level set. This reference map is then used to reconstruct
the new level-set field at time 𝑡 based on mapping values from the
level-set field at time 0 by 𝜑 (𝒙, 𝑡) = 𝜑 (𝝃 (𝒙, 𝑡), 𝑡0). It is noteworthy
that a conventional SDF-based level set only satisfies D𝜑/D𝑡 = 0 on

ξ

t0 t

Fig. 5. As time flows, the regular grid is deformed as well as the liquid
surface. We can track the deformed surface by combining the original level-
set surface with the reference map.

the interface (𝜑 = 0), which means the reconstructed level-set value
may deviate from an SDF. Practically, we accept slight deviation
and obtain level-set values by 𝜑 (𝒙) = 𝜑∗ (𝝃 (𝒙)) with confidence in
this situation. However, for the purposes of smoothness and con-
tinuity, if 𝜑 is deformed excessively, 𝜑∗ needs to be reinitialized
by the redistanced 𝜑 . Besides, the calculation of 𝜑∗ (𝝃 (𝒙)) relies on
successively interpolating 𝝃 and 𝜑∗ on a background discretization
(e.g., a Cartesian grid).

4 THE GARM-LS METHOD

4.1 Gradient Augmentation on Reference Maps
We incorporate gradient augmentation and a reference map into
a unified pipeline to facilitate a level-set method. Distinguished
from previous literature, which focused on addressing the feature
representation (with gradient augmentation, e.g., see the work of
Nave et al. [2010]) or volume preservation (with reference maps,
e.g., see the work of Theillard [2021]) separately. Our proposed
approach combines these two techniques. Our central idea is to (1)
accurately convect the reference-map gradients and (2) leverage the
reference-map gradients to reconstruct the level-set gradients and
its function values. Next, we provide a brief motivational analysis
to justify this design decision followed by a detailed description of
the two steps.
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Fig. 6. Two droplets collide in opposite directions. The two simulations with identical initial configuration, but different surface tension coefficients are
demonstrated in each individual rows. Specifically, the surface tension of the top line is twice that of the bottom line. Frame numbers from left to right: 0, 18
(40 for the bottom), 100, 150, 200, 300.

4.1.1 Motivation. A natural and reasonable way to combine level
sets and reference maps is to store the initial level set on the back-
ground grid and use its values to reconstruct the level sets in future
frames based on an evolving reference map 𝝃 . In this way we can
combine a conventional interpolation scheme and the reference
map technique to produce a modified advection scheme [Bellotti
and Theillard 2019; Narita and Ando 2022]. To improve its accuracy
using high-order information, we can use a gradient-augmented
level set for the initial frame, by storing additional 𝜑∗ (𝝃 ), and con-
duct Hermite interpolation for the future level set reconstruction.
However, we want to emphasize that simply augmenting 𝜑∗ (𝝃 )
with its gradients, without maintaining a high-order reference map
at the same time, is insufficient to obtain a high-order advected
level set. This can be seen by performing a simple numerical error
analysis on the mapping function: We assume that 𝜑∗ (𝝃 ) and 𝝃 (𝒙)
are respectively approximated by �̃�∗ (𝝃 ) and 𝝃 (𝒙). Then we can
obtain the approximation of 𝜑 (𝒙) as a composite function:

�̃� (𝒙) = �̃�∗
(
𝝃 (𝒙)

)
= 𝜑∗

(
𝝃 (𝒙) +

error︷   ︸︸   ︷
O(Δ𝑥𝑝 )

)
+

error︷   ︸︸   ︷
O(Δ𝑥𝑞)

= 𝜑 (𝒙) + O
(
Δ𝑥min(𝑝,𝑞)

)
, (4)

with Δ𝑥 denoting the grid spacing, which is derived from 𝜑 (𝒙) =
𝜑∗ (𝝃 (𝒙)). It suggests that the accumulated errors stem from both
the reference-map and level-set interpolation. Amore rigorous proof
can be found in the work of Mercier et al. [2020]. Because our gra-
dient augmentation for the initial level set is fourth-order accurate,
we want to match this order in the reference map. To this end, we
choose to advect the reference map gradient ∇𝝃 (the derivative of
the mapping from the current frame to the first frame w.r.t. the
coordinates in the current frame) using a fourth-order accurate
advection scheme.

4.1.2 Updating the reference map and its gradients. Similar to the
GALS method [Nave et al. 2010], we write the advection equations

for 𝝃 and ∇𝝃 as follows:
D𝝃
D𝑡

= 0, (5)

D∇𝝃
D𝑡

= −∇𝒖 · ∇𝝃 . (6)

Instead of solving Eq. (6) by explicitly updating the velocity gradi-
ents and accumulating their stretching effects in the time integration,
we choose to solve them from a reference-mapping perspective. As
stated as the superconsistency condition in [Nave et al. 2010], Eqs.
(5) and (6) can be rewritten as a reference-mapping problem from
frame 𝑡 − Δ𝑡 to frame 𝑡 :{

𝝃 (𝒙𝑖 , 𝑡) = 𝝃 (B(𝒙𝑖 , 𝒖,Δ𝑡), 𝑡 − Δ𝑡), (7)
∇𝝃 (𝒙𝑖 , 𝑡) = ∇B(𝒙𝑖 , 𝒖,Δ𝑡) · ∇𝝃 (B(𝒙𝑖 , 𝒖,Δ𝑡), 𝑡 − Δ𝑡), (8)

where the process B(𝒙, 𝒖,Δ𝑡) returns the back-traced point of 𝒙 on
a flow distribution 𝒖. In our numerical practice, we adopt a third-
order total variation diminishing Runge–Kutta (TVD-RK3) scheme
to back-trace each grid point from frame 𝑡 to frame 𝑡 − Δ𝑡 (Alg. 2).
For a better comprehension of the superconsistency, a first-order
scheme is provided here. See Alg. 1. We point out that B plays as
the role of a reference map.

ALGORITHM 1: First-Order Superconsistent Semi-Lagrangian Ad-
vection of the Gradient-Augmented Reference Map

Input: the reference map 𝝃 and its gradient ∇𝝃 , the velocity field 𝒖,
and the time step Δ𝑡 .

Output: the advected fields 𝝃 ′ and ∇𝝃 ′.
Acquire ∇𝒖 by finite differences of 𝒖;
for every cell center 𝒙𝑖 do

𝒙 (0) ← 𝒙𝑖 ;
𝒖 (0) , ∇𝒖 (0) ← L(𝒖, 𝒙 (0) ), L(∇𝒖, 𝒙 (0) ) ;
/* one step back-tracking */
𝒙 (1) ← 𝒙 (0) + Δ𝑡 𝒖 (0) ;
∇𝒙 (1) ← 𝑰 + Δ𝑡 ∇𝒖 (0) ;
/* Hermite interpolation */
𝝃 ′
𝑖
, ∇𝝃 ′

𝑖
← H(𝝃 , ∇𝝃 , 𝒙 (1) ) ;

∇𝝃 ′
𝑖
← ∇𝒙 (1) · ∇𝝃 ′

𝑖
;
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Fig. 7. Two droplets collide in diagonal directions. Frame numbers from left to right: 0, 125, 369, 450.

As a side note, we want to bring to the readers’ attention of the
geometric connection between Eqs. (7), (8) and the characteristic
mapping scheme of impulse in the work of Cortez [1995] (Proposi-
tion 1 and Proposition 3) and Nabizadeh et al. [2022] (Eqs. (2) and
(3)): the gradient of a reference map is mathematically identical to
an impulse field advected in an incompressible flow field.

ALGORITHM 2: High-Order Superconsistent Semi-Lagrangian Ad-
vection of the Gradient-Augmented Reference Map

Input: the reference map 𝝃 and its gradient ∇𝝃 , the velocity field 𝒖,
and the time step Δ𝑡 .

Output: the advected fields 𝝃 ′ and ∇𝝃 ′.
Acquire ∇𝒖 by finite differences of 𝒖;
for every cell center 𝒙𝑖 do

𝒙 (0) ← 𝒙𝑖 ;
𝒖 (0) , ∇𝒖 (0) ← L(𝒖, 𝒙 (0) ), L(∇𝒖, 𝒙 (0) ) ;
/* TVD-RK3 back tracking */
𝒙 (1) ← 𝒙 (0) + Δ𝑡 𝒖 (0) ;
∇𝒙 (1) ← 𝑰 + Δ𝑡 ∇𝒖 (0) ;
𝒖 (1) , ∇𝒖 (1) ← L(𝒖, 𝒙 (1) ), L(∇𝒖, 𝒙 (1) ) ;
𝒙 (2) ← 𝒙 (0) + Δ𝑡

4

(
𝒖 (0) + 𝒖 (1)

)
;

∇𝒙 (2) ← 𝑰 + Δ𝑡
4

(
∇𝒖 (0) + ∇𝒙 (1) · ∇𝒖 (1)

)
;

𝒖 (2) , ∇𝒖 (2) ← L(𝒖, 𝒙 (2) ), L(∇𝒖, 𝒙 (2) ) ;
𝒙 (3) ← 𝒙 (0) + Δ𝑡

6

(
𝒖 (0) + 𝒖 (1) + 4𝒖 (2)

)
;

∇𝒙 (3) ← 𝑰 + Δ𝑡
6

(
∇𝒖 (0) + ∇𝒙 (1) · ∇𝒖 (1) + 4∇𝒙 (2) · ∇𝒖 (2)

)
;

/* Hermite interpolation */
𝝃 ′
𝑖
, ∇𝝃 ′

𝑖
← H(𝝃 , ∇𝝃 , 𝒙 (3) ) ;

∇𝝃 ′
𝑖
← ∇𝒙 (3) · ∇𝝃 ′

𝑖
;

Alg. 2 shows specific steps of the proposed high-order semi-
Lagrangian advection. Here the velocity field is assumed to be in-
variant during advection, and 𝑰 stands for the second-order unit
tensor. The procedures that return the reference map and its gradi-
ent as a pair by bicubic/tricubic Hermite interpolation are denoted
H(𝝃 ,∇𝝃 , 𝒙). The procedures that return velocity and its gradient by
bilinear/trilinear interpolation are denoted L(𝒖, 𝒙) and L(∇𝒖, 𝒙).

4.1.3 Updating the level set and its gradients. Following the idea of
Eqs. (7) and (8), we can restore the current level-set function and its
gradients by {

𝜑 (𝒙) = 𝜑∗ (𝝃 (𝒙)), (9)
∇𝜑 (𝒙) = ∇𝜑∗ (𝝃 ) · ∇𝝃 (𝒙). (10)

Here, the first equation is used to generate the current level-set
value, and the second equation is useful for evaluating the normal

and curvature at a given point. Both equations take the updated
reference map and use it to map the level set and its gradients from
the reference frame. Again, we want to highlight the geometric
connection between Eqs. (7), (8) and Eqs. (9), (10), which tackles
different fields and their gradients both from a reference-mapping
perspective. The difference lies in that we use a larger time interval
(𝑡 − 𝑡0) (typically around 10Δ𝑡 in our implementation) to back-trace
𝜑 and ∇𝜑 .

4.2 Extrapolation
4.2.1 Problem: reference-map extrapolation. In a traditional level-
set advection procedure, a narrow band of grid cells outside the
zero-level set is maintained to avoid reading any incorrect velocity
values outside the fluid domain. Velocity values are extrapolated
from the cells on the fluid interface to the cells in the narrow band.
In contrast to a pure level-set approach, a traditional reference

map should be maintained in the full space, and the velocity values
should be continuous everywhere. In a free-surface flow simulation,
only those velocity values inside the narrow-band are valid, causing
the result 𝝃 and ∇𝝃 to be inaccurate and discontinuous. By inter-
polation on these values when we update the level-set values, the
discontinuity can be further amplified and induce fluid creation (if
the reference-mapped level set value is incorrectly negative) and
annihilation (if the reference-mapped level-set value is incorrectly
positive). Therefore, an extrapolation is needed to alleviate the dis-
astrous consequences of the discontinuous reference map. We shall
maintain two properties of the extrapolated reference map within
the entire fluid domain plus its narrow band:
(1) 𝝃 and ∇𝝃 should be continuous before an advection process;
(2) Interpolated level-set values 𝜑 should not change their sign after

the extrapolation.

4.2.2 Algorithm: extended reference-map extrapolation. We devise
a new reference-map extrapolation algorithm to realize this goal.
Our key idea is to maintain a further extended narrow band outside
the original narrow band (for velocity extrapolation) to support the
advection of the reference map and its gradients. The 𝝃 value in the
extended narrow band is updated based on a constant extrapolation
of 𝝃 from the boundary of the original narrow band. The ∇𝝃 value
can be updated using the finite difference of the extrapolated 𝝃 in
the extended narrow band. In practice, we find extrapolating only
𝝃 but not ∇𝝃 is good enough to maintain a robust reference map
for level-set advection.
We illustrate the key steps of our reference-map extrapolation

algorithm in Fig. 9. We denote the fluid region as 𝛺 , the fluid region
plus its narrow band as 𝛺a (which is named advection region), and
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Fig. 8. Dropping of orange juice. Frame numbers from left to right: 175, 275, 375.
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Fig. 9. The extrapolation process.

the advection region plus the extended narrow band as𝛺e (which is
named extended region). In each time step, our algorithm includes
three key steps. 1 – 2 We perform level-set advection within 𝛺a to
update the fluid domain; then 2 – 3 we update the extended narrow
band outside 𝛺a to get the new 𝛺e and perform reference-map
extrapolation in this extended narrow band; 3 – 4 we update the
narrow band outside the fluid domain to get the new𝛺a and perform
velocity extrapolation in the new narrow band. We employ a CFL
condition on the extrapolation band size 𝑑 and 𝑟 as 𝑑 > Δ𝑡 |𝒖max |
and 𝑟 > Δ𝑡 |𝒖max | respectively, with |𝒖max | denoting the estimated
maximum speed of fluid. We summarize the algorithm pseudocode
in Alg. 3.

4.3 Reinitialization
4.3.1 Motivation. A conventional level-set method performs reini-
tialization regularly to redistance the level-set field. This step in-
troduces extra numerical errors because the interface’s position
(0-isocontour) is affected by reinitialization due to its low-order
accuracy. For instance, among the popular choices for reinitializa-
tion, the fast-marching method (FMM) [Sethian 1996] is first-order
accurate, and even a generally fifth-order weighted essentially non-
oscillatory (WENO) scheme [Jiang and Peng 2000] is only second-
order accurate around the interface, as noted by Gibou and Fedkiw
[2005]. This reinitialization-induced error becomes more dominant
if numerical errors introduced by other steps are reduced by high-
order schemes, e.g., the reference mapping [Narita and Ando 2022].
In particular, in our setting, numerical errors stem from two sources
— advection and reinitialization. After reducing the reference-map
error by incorporating gradients and reference map, a natural next

ALGORITHM 3: Extended Extrapolation for the Reference Map
Input: the reference map 𝝃 and its gradient ∇𝝃 , the velocity field 𝒖,

the liquid region 𝛺 , the advection region 𝛺a, and the
extrapolation radii 𝑟 and 𝑑 .

Output: the extrapolated fields 𝝃 ′, ∇𝝃 ′, and 𝒖′, and the new
advection region 𝛺′a.

for every cell center 𝒙𝑖 do
if 𝝃𝑖 ∈ 𝛺a then

𝝃 ′
𝑖
← 𝝃𝑖 ;

∇𝝃 ′
𝑖
← ∇𝝃 (𝒙𝑖 ) ;

/* Fig. 9 2 – 3 reference map extrapolation */
for every cell center 𝒙𝑖 do

if 𝝃𝑖 ∉ 𝛺a and GetDistance(𝒙𝑖 , 𝛺a) ≤ 𝑑 then
𝝃 ′
𝑖
← 𝝃 (GetClosestPosition(𝒙𝑖 , 𝛺a)) ;

∇𝝃 ′
𝑖
← ∇s𝝃 (GetClosestPosition(𝒙𝑖 , 𝛺a)) ;

/* Fig. 9 3 – 4 velocity extrapolation */
𝛺′a ← ∅;
for every face center 𝒙𝑖 do

if 𝒙𝑖 ∈ 𝛺 then
𝒖′
𝑖
← 𝒖 (𝒙𝑖 ) ;

𝛺′a ← 𝛺′a ∪ GetNeighborCells(𝒙𝑖 ) ;
else if GetDistance(𝒙𝑖 , 𝛺) ≤ 𝑟 then

𝒖′
𝑖
← 𝒖 (GetClosestPosition(𝒙𝑖 , 𝛺)) ;

𝛺′a ← 𝛺′a ∪ GetNeighborCells(𝒙𝑖 ) ;
else

𝒖′
𝑖
← 0;

step to improve the algorithm’s overall accuracy is to reduce the
numerical errors in reinitialization.
We practice two strategies toward this goal, by (1) employing

a dynamic reinitialization criterion based on measuring the refer-
ence map stretching and (2) devising an improved quasi-Newton
method to stabilize the 0-level set during reinitialization. After con-
ducting these two new strategies, our reinitialization step manifests
fourth-order accuracy (as evidenced by our numerical experiments
in §6.1.2), which matches our fourth-order advection step. Next, we
will introduce these two steps in detail. We summarize the entire
algorithm in Alg. 4.

4.3.2 Reinitialization criterion. The presence of 𝝃 makes it possi-
ble to reduce the call of reinitialization, because the reference map
allows us to check if a level-set function is over-distorted, in which
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Quadratic
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MC+RM
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PLS (64x)
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Fig. 10. Zalesak’s disk (2D). A slotted circle is driven by a rotation velocity field. The left images with grey background are the simulation results when the
circles perform two complete rotations (𝑡 = 12.56 s) with different advection algorithms annotated on the bottom left corner of each image. Every grid cell
in these images represents a 20 × 20 block in the simulation. For a clearer comparison, the contours in the dashed line enclosed regions of GALS,
GARM-LS, PLS (16x), and PLS (64x) are plot with different colors in the right most figure. A zoomed-in view around one contour corner is also provided.
The grid cells on the white background coincide with those used in the simulation.

case bijectivity of the reference map is nearly lost. In 2D, lost bi-
jectivity means that there must be one contour line of 𝜕𝝃 /𝜕𝑥 that
intersects one contour line of 𝜕𝝃 /𝜕𝑦 more than once. The same
conclusion applies to the three-dimensional case. Following Bellotti
and Theillard [2019], we define a reinitialization criterion according
to angles between partial derivatives of 𝝃 :

max
𝒙∈𝑈 (𝜕𝛺,𝜀r)

max
𝑖, 𝑗 ∈[1,d],𝑖≠𝑗

(
∇𝜉𝑖

|∇𝜉𝑖 |
·
∇𝜉 𝑗

|∇𝜉 𝑗 |

)
> cos𝜃crit, (11)

with𝑈 (𝜕𝛺, 𝜀r) standing for the 𝜀r-neighborhood of 𝜕𝛺 and d denot-
ing the number of dimensions. Different from the cited work, which
acquires these partial derivatives through numerical difference, we
leverage the advected reference-map gradients to obtain a more reli-
able criterion. Every time when the reinitialization criterion is met,
we perform a restart process to reinitialize the reference level-set
function and then to set 𝝃 and ∇𝝃 at every cell center 𝒙𝑖 as follows:

𝜑∗ (𝝃 ) = 𝜑 (𝒙), (12)
𝝃 (𝒙𝑖 ) = 𝒙𝑖 , (13)
∇𝝃 (𝒙𝑖 ) = 𝑰 . (14)

4.3.3 Reinitialization algorithm. We propose a gradient-augmented
reinitialization scheme based onAnumolu and Trujillo [2013], which,
to the best of our knowledge, is the state-of-the-art result for gradient-
augmented level-set reinitialization. For completeness, we briefly
introduce their framework in the following three steps:
(1) The simulation region is divided into 2 subregions, namely 𝛺i

for the interfacial region and 𝛺o for the rest region, where the
interfacial region is chosen so that all cells inside it are close to
the surface by a distance of several cell length, as illustrated in
Fig. 11.

(2) A quasi-Newton method is applied to find the nearest point 𝒙
on 𝜕𝛺 for every grid point 𝒙𝑖 in 𝛺i. We update 𝒙 by iteratively
perform a gradient-descent step and a perpendicular-moving
step. The gradient-descent step finds the closet point on 𝜕𝛺

along current ∇𝜑 . While, the perpendicular-moving step makes

Fig. 11. An illustration for the inter-
facial region 𝛺i and the rest region
𝛺o.

P0
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Pk+1

Pe

Qk Ω

Qk+1

Fig. 12. An illustration of the jump-
ing phenomenon in the original
reinitialization algorithm.

the point move perpendicularly with∇𝜑 to further align (𝒙−𝒙𝑖 )
with ∇𝜑 . When converged, the found point is used to update
the level-set value and gradient.

(3) Given that 𝜑 and ∇𝜑 in 𝛺i are reinitialized, the level-set values
are propagated from the interface to 𝛺o by solving the Eikonal
equation with a semi-Lagrangian advection.

We improve Anumolu and Trujillo [2013]’s scheme in three as-
pects including initial guess, back-and-forth trial, and fast-marching
postprocess, to obtain robust results in different simulation settings.
We briefly introduce each of these aspects.

Initial guess. In our method, after several time steps without a
restart, the level-set function values and gradients evaluated by
back-tracing the reference frame, can deviate from a signed distance
field. Only those cells that are close to the interpolated surface can
keep the gradient direction with enough precision. For cells being
simultaneously close to different pieces of the surface, the gradient
can even point to the further piece of the surface instead of the
nearest. We obtain an initial guess by conducting several WENO
iterations, allowing the quasi-Newton iteration to search for the
nearest position on the surface. That allows a narrow band of cells
around the interface to be correctly reinitialized.
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Cubic Cubic+RM MC MC+RM GALS GARM-LS PLS (64x)𝑡 = 𝑇

𝑡 = 𝑇 /2

𝑡 = 𝑇
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Fig. 13. LeVeque’s circle (2D). The two figures in each column are generated by the same advection scheme that is annotated in the bottom left corner. Every
grid cell in the figures represents a 20 × 20 simulation block. Given𝑇 = 12.56 s, we examine here the results of the algorithms at two particular time instances.
The first is 𝑡 = 𝑇 /2 when the fluid is deformed to to the maximum (the top row), and the second is 𝑡 = 𝑇 when the fluid shape is supposed to turn back into a
circle (the bottom row). In each figure, we compare the simulated fluid region with the ground truth (which is generated by Cubic on a 4000 × 4000 grid). The
areas added due to numerical errors are colored red, while the missing areas are colored blue. The light yellow area indicates the part where the ground truth
overlaps the simulation result.

Back-and-forth trial. To capture small droplets whose radius of
curvature is comparable to the size of one grid cell, we have to deal
with the jumping phenomenon during the quasi-Newton iterations.
Fig. 12 demonstrates an example of such jumping. The target cell
center is denoted by 𝑃0, and the fluid lies inside the region Ω. We
expect the iteration point to converge at 𝑃𝑒 . By some iterations, the
actual iteration point goes to 𝑃𝑘 , where the level-set function value
and the gradient are almost correct. However, in the next step, the
point not only goes through the gradient-descent step but also goes
through the perpendicular-moving step to make the gradient point
𝑃0. That makes the next iteration point 𝑃𝑘+1 instead of 𝑄𝑘 , which
further causes the iteration point to oscillate between 𝑃𝑘+1 and 𝑃𝑘 .
We add a back-and-forth trial to detect such oscillation and choose
the next iteration point to be the middle point of 𝑃𝑘 and 𝑃𝑘+1. Our
experiments show this process successfully eliminates jumping in
our quasi-Newton iterations.

Fast-marching post-processing. A semi-Lagrangian propagation
was used in the work of Anumolu and Trujillo [2013] to fill the rest
region, requiring a non-zero gradient of the level-set function to be
available in the entire rest region, which is not always satisfied in
our setting. We apply a standard fast-marching method to propagate
the level set from the interface to the rest region. Then, we calculate
the level-set gradients with finite differences in the rest region. This
change makes the propagation robust without affecting level set
values near the interface.

5 TIME INTEGRATION
In each time step, we first advect the reference map, its gradient, and
the velocity field according to the velocity field. After advection, we
check the restart criterion and decide whether to perform a restart
process. Next, we project the fluid velocity field for the conservation
of volume. Finally, we extrapolate the projected velocity and refer-
ence map into the air. The full algorithm in a time step from 𝑡 to
𝑡 + Δ𝑡 reads as follows. For the completeness of the framework, all
necessary components in general fluid simulation are included here.

ALGORITHM 4: Improved Reinitialization for GARM-LS
Input: the reference level set and its gradient 𝜑∗ and ∇𝜑∗, the

reference map and its gradient 𝝃 and ∇𝝃 , the prescribed
interfacial region 𝛺i, the rest region 𝛺o, and the tolerance 𝜀 .

Output: the reinitialized 𝜑∗′ and ∇𝜑∗′.
for every cell center 𝒙𝑖 in 𝛺i do

𝒙 ← GuessByWENO(𝒙𝑖 ) ;
𝒈 ← ∇̃𝜑∗ (𝝃 ) · ∇𝝃 (𝒙) ;
Δ𝒙′ ← 0;
repeat

Δ𝒙 ← −𝜑∗ (𝝃 (𝒙)) 𝒈/ |𝒈 |2;
Δ𝒙 ← Δ𝒙 + (𝒙 − 𝒙𝑖 ) − (𝒈 · (𝒙 − 𝒙𝑖 )) 𝒈/ |𝒈 |2;
if |Δ𝒙 + Δ𝒙′ | < 𝜀 then Δ𝒙 ← Δ𝒙/2 ;
𝒙 ← 𝒙 + Δ𝒙 ;
𝒈 ← ∇̃𝜑∗ (𝝃 ) · ∇𝝃 (𝒙) ;
Δ𝒙′ ← Δ𝒙 ;

until Δ𝒙 < 𝜀;
𝜑′∗
𝑖
← |𝒙𝑖 − 𝒙 | · sgn𝜑∗ (𝝃 (𝒙𝑖 )) ;

∇𝜑′∗
𝑖
← (𝒙𝑖 − 𝒙)/ |𝒙𝑖 − 𝒙 | · sgn𝜑∗ (𝝃 (𝒙𝑖 )) ;

𝜑′∗ ←FastMarching (𝜑′∗, 𝛺i, 𝛺o);
for every cell center 𝒙𝑖 ∈ 𝛺o do

∇𝜑′∗
𝑖
←FiniteDifference (𝜑′∗, 𝒙𝑖 );

The viscosity term is omitted in all of our demos to produce more
dramatic animations. The presence of gravity and surface tension
depends on the particular configuration.
(1) Advect the reference map 𝝃 , the reference map gradient ∇𝝃 ,

and the velocity field 𝒖 in the advection region 𝛺a with the
super-consistent semi-Lagrangian method (Alg. 2). Record the
level-set value on each grid cell by tracking back to the reference
frame.

(2) (Optional) Add external fluid sources by unioning the level set
with external sources. If the value of the level set field is changed
somewhere, switch the level-set gradient to that of the external
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Fig. 14. Distorted circle (2D). The advection algorithm is annotated on each image with gray background showing the circle after extreme distortion (𝑡 = 6 s).
Every grid cell in the visualization represents a 20 × 20 block in the simulation. Two algorithms, namely Quadratic andQuadratic+RM, are omitted here for
conciseness. Quadratic and Quadratic+RM visually behaves in between Linear+RM and Cubic, with Quadratic+RM giving a longer spiral than Quadratic (see
the supplementary video). In the rightmost figure with a white background, we plot results of seven algorithms together for comparison purposes. Each result
corresponds to a unique color as follows: Cubic, Cubic+RM, MC, MC+RM, GALS, GALS+RM, and PLS (64x). The area drawn is
framed with dotted lines in the images. There are grid cells indicating 2 × 2 block used in the simulation on the white background.

fluid sources, then reset the reference map and the reference
map gradient there.

(3) Check whether the reinitialization criterion (11) is met. If so, the
level-set function 𝜑 and its gradient ∇𝜑 is reinitialized by Alg. 4,
and the reference map is reset to an identity mapping (Eqs. (13)
and (14)).

(4) (Optional) Apply external forces directly to velocity field, such
as gravity: 𝒖 ← 𝒖 + Δ𝑡𝒈.

(5) Project 𝒖 by solving a standard fluid Poisson’s equation with
boundary conditions as follows:
∇ ·

(
𝒖 − Δ𝑡

𝜌
∇𝑝

)
= 0, in the fluid region, (15a)

𝑝 = 𝑝0, on the free surface, (15b)
Δ𝑡

𝜌
(𝒏 · ∇𝑝) = 𝒏 · (𝒖 − 𝒖solid) , on the solid-liquid interface. (15c)

To retain the smoothness of the solid-liquid boundaries, we
apply the method of Batty et al. [2007] which adds modifications
to the matrix of projection solve. After solving the system for 𝑝
we update the velocity by 𝒖 ← 𝒖 − Δ𝑡∇𝑝/𝜌 .

(6) (Optional) Apply the capillary surface tension on the interface
with a semi-implicit method [Zheng et al. 2006]. The linear
system reads

𝒖 ′ − 𝒖
Δ𝑡

= −𝜎
𝜌
𝛿 (𝜑)

[
Δ𝑡∇2𝒖 ′ − 𝜅𝒏 − Δ𝑡

(
𝜕2𝒖

𝜕𝒏2
+ 𝜅 𝜕𝒖

𝜕𝒏

)]
, (16)

with the operators of partial derivatives defined by 𝜕/𝜕𝒏 = 𝒏 ·∇,
and 𝜕2/𝜕𝒏2 = 𝒏 · ∇2 · 𝒏. After solving this system for 𝒖 ′, the
velocity is updated by 𝒖 ← 𝒖 ′.

(7) Re-apply the projection step to ensure a divergence-free velocity
field.

(8) Extrapolate the reference map and the velocity field by Alg. 3.
Meanwhile, yield the new advection region for the next time
step.

Even though all of our examples do not consider viscosity, there
should be no hurdle to integrate the conventional viscosity handling

into the current framework after Step (5), in which a Poisson system

𝒖 ′ = 𝒖 + 𝜇Δ𝑡

𝜌
∇
2𝒖 ′ (17)

is solved for 𝒖 ′, and then a velocity update 𝒖 ← 𝒖 ′ is applied.
We refer the readers to the work of Batty and Bridson [2008] for
boundary conditions and other implementation details.

In the current implementation, the standard ghost fluid boundary
conditions [Gibou et al. 2002] are applied for setting up the boundary
condition in velocity projection step. Under this scheme, a cell is
considered as a liquid cell as long as its center is inside the liquid.
High-order velocity projection scheme is preferred to better track
sub-grid features. We will come back to this limitation in §7.

6 EXPERIMENTAL RESULTS

6.1 Validation
We first validate our proposed algorithms upon specially designed
scenarios. In order to reveal the capability of our algorithm on reduc-
ing the level-set error introduced by advection and reinitialization,
we test these two procedures in §6.1.1 and §6.1.2 separately. We
further show the practical results on the combination of these two
procedures as well as the local extrapolation scheme in §6.2.
For the purpose of quantitative analysis, the area/volume of the

level-set liquid is calculated as follows:

• In 2D, the liquid area is the sum of the areas of triangles, which
are generated by marching squares on a grid that is four times
finer than the original grid in each dimension;
• In 3D, the liquid volume is evaluated using the fast marching-
cubes-style scheme, proposed by Takahashi and Batty [2022].

We also define the average absolute error (AAE) of the level-set
function as

AAE =
1
𝑁

𝑁∑︁
𝑖=1
|�̃� (𝒙𝑖 ) − 𝜑 (𝒙𝑖 ) | (18)
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Linear/+RM Quadratic/+RM Cubic/+RM MC/+RM GALS/GARM-LS PLS (64x/256x)

Fig. 15. LeVeque’s sphere (3D). Each image is composed of two halves, namely the yellow half and the blue half, which are generated by relevant but different
algorithms. Images in the top row show intermediate results at 𝑡 = 5 s when the fluid is deformed to the maximum; those in the bottom row show the final
counterparts at 𝑡 = 10 s when the fluid shape is desired to turn back into a sphere. Images in the same column share the same advection algorithms, which are
annotated below. The algorithm descriptions of the yellow half and the blue half are separated by a slash ‘/’, where “~/~+RM” is abbreviated as “~/+RM”.

Table 2. List of used acronyms of advection schemes throughout the paper.

Acronym† Method
Linear Semi-Lagrangian [Stam 1999]
Quadratic Semi-Lagrangian with quadratic interpolation‡

Cubic Semi-Lagrangian with cubic interpolation‡
MC Modified MacCormack [Selle et al. 2008]
GALS Gradient-augmented level-set [Nave et al. 2010]
PLS Particle level-set [Enright et al. 2005]
† Acronyms of the reference-map modified versions of advection algorithms are
denoted “~+RM”, e.g., Linear+RM, Quadratic+RM, and Cubic+RM.

‡ The quadratic interpolation follows the Eqs. (12) and (13) in the work of Min
and Gibou [2007]; the cubic one implements §3.5 of Bridson’s book [2015].

to facilitate the quantitative evaluation of the level-set function
distribution and the convergence of the algorithm. In AAE, �̃� (𝒙) and
𝜑 (𝒙) denote the numerical and the ground truth level-set function
value at sample 𝒙𝑖 , respectively. A unified predefined point set,
which consists of 𝑁 (more than 10, 000) randomly sampled points
around the ground-truth interface, is used in each comparison.

6.1.1 Advection. We validate our approach in three standard and
two original advection tests. All these tests are carried out in a
simulation domain that satisfies 𝑥,𝑦, 𝑧 ∈ [−5m, 5m] with a time
step size Δ𝑡 = 0.02 s. The comparisons are made among the main-
stream grid-based level-set advection algorithms (listed in Table 2),
their reference-map modified versions, and the particle level-set
(PLS) method. For better accuracy, as recommended by Enright et al.
[2005], we disabled reseeding in PLS during the following tests. The
number of particles initialized in each near-surface grid cell is indi-
cated in brackets, such like "PLS (16x)". Reinitialization is disabled
for all the tests here to extract the level-set function error generated
by pure advection, except for the PLS method, which requires reini-
tialization to maintain surface smoothness. For fairness reasons,
whenever we back-trace grid points, a third-order Runge–Kutta
method is used.

Zalesak’s disk (2D). We normalize the classical Zalesak’s disk
[Selle et al. 2008] setting to fit in our simulation domain. A slotted
circle with a radius of 1.5m is initially centered at (0, 2.5m). The
slot size is 0.5m by 2.5m. From 𝑡 = 0 to 𝑡 = 12.56 s, a rotational
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Fig. 16. Volume evolution curves of Zalesak’s disk (2D). All reference-map
augmented algorithms excluding Linear+RM preserve the volume well in
this setting. In order to distinguish their curves, a zoomed-in view is attached.

velocity field

𝒖 =
𝜋

157Δ𝑡
(−𝑦, 𝑥)

is applied to drive the circle rotate. We show the advected results
simulated on a 100×100 grid in Fig. 10 and plot the volume evolution
curves in Fig. 16.
After two complete rotations, the conventional (linear) semi-

Lagrangian scheme loses all volume, while the quadratic-interpolated
semi-Lagrangian scheme (9.05% variation in volume) results in an
excessively smooth interface. These outcomes demonstrate that
low-order algorithms cannot maintain surface detail over time.
The higher-order schemes, namely the cubic-interpolated semi-
Lagrangian (3.88% variation) and modified MacCormack (8.27%
variation) schemes, are better at conserving volume and shape.
However, the modified MacCormack scheme can destroy reflection
symmetry. Among all the reference-map-free Eulerian methods, the
GALS (6.52‰ variation) is most effective at preserving the sharp
corners of the circle. The reference-map augmented versions of all
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Linear Quadratic Cubic MC GALS PLS (64x)

Linear+RM Quadratic+RM Cubic+RM MC+RM GARM-LS PLS (256x)

Fig. 17. Distorted sphere (3D). Images here show the final results at 𝑡 = 6 s with the advection algorithms annotated bellow. Some of them are empty because
the corresponding simulation loses all the volume at this moment. We point out that Linear+RM experiences a numerical drift that causes the fluid to hit the
simulation boundary incorrectly.
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Fig. 18. Volume evolution curves of LeVeque’s circle (2D). Some algorithms
experience both increases and decreases in volume, which accidentally
neutralizes volume variation.

the above-mentioned algorithms outperform their original coun-
terparts on the volume and shape conservation. In this specific
scenario, the Quadratic+RM (3.01‰ variation), Cubic+RM (0.755‰
variation), MC+RM (0.214‰ variation), and GARM-LS (0.163‰ vari-
ation) schemes achieve almost identical results. Even the conven-
tional semi-Lagrangian scheme can largely maintain shape with the
aid of reference mapping (9.31% variation).
As a hybrid method, PLS needs to correct the level set with par-

ticle information every time step. This mechanism improves the
algorithm’s ability on shape conservation but falls short in maintain-
ing the interface smoothness (see the zoomed-in view in Fig. 16) and
the temporal continuity (see the supplementary video). Although
Enright et al. [2005] suggested generating 16 particles per cell ini-
tially for 2D cases, we find that the above issues can be somehow
addressed by increasing the particle number. As shown in Fig. 16,

𝑡 = 0 s 𝑡 = 0.4 s 𝑡 = 0.8 s 𝑡 = 1.2 s

Fig. 19. A circle is being distorted by a divergence-free rotational velocity
field. The closer to the center, the greater the angular velocity. The four
frames shown are given by GARM-LS on a 200 × 200 grid. Every grid cell in
the images corresponds to a 20 × 20 block in the simulation.

PLS (64x) is second only to GARM-LS in preserving sharp corners.
However, the roughness of the PLS interface still results in global
volume variation. According to quantitative analysis, PLS (16x) and
PLS (64x) suffer from 1.83% and 1.20% volume loss, respectively.

LeVeque’s circle (2D). A circle with radius 𝑟 = 1.5m is centered at
(0, 2.5m) initially. Unlike the original LeVeque’s circle test [1996],
the circle here is deformed by a modified divergence-free velocity
field [Nave et al. 2010]

𝒖 = 𝑢0 cos
𝜋𝑡

628Δ𝑡

(
cos2

𝜋𝑥

𝑎0
sin

2𝜋𝑦
𝑎0

,− sin 2𝜋𝑥
𝑎0

cos2
𝜋𝑦

𝑎0

)
,

in which 𝑢0 = 10m s−1 and 𝑎0 = 10m. At 𝑡 = 6.28 s, the circle is
deformed to maximum, and gradually restore to the initial shape
at 𝑡 = 12.56 s as the velocity reverses in the second half of the time
interval. We conduct this experiment on a 200 × 200 simulation
grid with different advection algorithms. Their simulation results
are demonstrated in Fig. 13, and the volume evolution curves are
plotted in Fig. 18.
At 𝑡 = 6.28 s, GARM-LS is the best to predict the correct fluid

shape with only 4.30‰ volume variation. All the other schemes re-
sult in non-negligible shape incorrectness. The algorithms that lead
to volume loss are Linear (100% loss), Quadratic (91.3%), Linear+RM
(16.5%), PLS (16x, 7.99%), Cubic (5.86%), and PLS (64x, 2.47%), and
those lead to volume growth are Quadratic+RM (14.2% variation),
MC+RM (2.92%), Cubic+RM (2.91%), MC (2.45%), and GALS (1.15%).
In the second half of the simulation when the velocity field reverses,
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Fig. 20. Volume evolution curves of the distorted circle (2D). Every algorithm
exhibits volume loss during the period of time. The subtle differences on
volume loss of some algorithms are demonstrated in the zoomed-in view.

some algorithms may introduce errors in the opposite direction,
which coincidentally neutralizes the volume error. These algorithms
are MC+RM (2.46% variation) and GALS (5.72‰ variation). Despite
this, compared to other purely Eulerian methods, GARM-LS (9.90‰
variation) still outputs the most correct shape as shown in Fig 13. It
is worth noting that such a back-and-forth scenario is well-suited
for algorithms that can make use of the initial information. That
is why reference-map augmented algorithms recovers circle better
than the original versions, and why particle-based methods can
return to the initial state more easily. When the number of particles
per cell is increased to 64, the PLS method can generate a perfect
circle with only 2.85‰ variation in volume. After all, more particles
mean more initial information.

Distorted circle (2D). As illustrated in Fig. 19, a circle centered at
(0, 2.5m) with radius 𝑟 = 2m is distorted as time flows by a well
designed divergence-free rotational velocity field, which reads

𝒖 =
𝑢0√︁

𝑥2 + 𝑦2 + 𝑟0
(𝑦,−𝑥)

where 𝑢0 = 4m/s and 𝑟0 = 1.0m. After 6 seconds, the circle has
undergone severe distortion and turns into a spiral. The inner end of
the spiral becomes so thin that even a 200× 200 grid cannot prevent
the sub-cell features from disappearing, as shown in Fig. 14. The
corresponding volume curves are plotted in Fig. 20.

In this test, each algorithm suffers from volume loss. Sorted by the
proportion of volume loss at𝑇 = 6 s in a descendingmanner, they are
Linear (39.9%), Quadratic (15.9%), Quadratic+RM (7.49%), Linear+RM
(6.49%), Cubic (4.80%), Cubic+RM (4.73%), PLS (16x, 4.17%), PLS (64x,
2.89%), MC+RM (2.46%), MC (2.19%), GALS (2.09%), and GARM-LS
(2.06%). In most cases, the reference-map augmented algorithms
preserve more sub-cell geometric features (longer spirals) than their
original versions. Even taking advantage of the reference map, low-
order algorithms cannot outperform high-order algorithms. The
PLS methods fails to acquire a continuous interface owing to its
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Fig. 21. Volume evolution curves of LeVeque’s sphere (3D). Some algorithms
accidentally neutralizes volume variation, similar to those in the 2D case.

low-order interpolation scheme. Although particles are adequate
around the inner end, they cannot be used to recover the level set
due to the limited grid size. In addition, there is a radial offset in the
simulation of MC and MC+RM. This reflects the shortcomings of
the modified MacCormack method in preserving symmetry.

LeVeque’s sphere (3D). As inspired by Nave et al. [2010], a sphere
of radius 𝑟 = 1.5m is centered at (−1.5m,−1.5m,−1.5m) initially.
It is then deformed by a divergence-free velocity field 𝒖 = (𝑢, 𝑣,𝑤):

𝑢 = 2𝑢0 cos
𝜋𝑡

500Δ𝑡
cos2

𝜋𝑥

𝑎0
sin

2𝜋𝑦
𝑎0

sin
2𝜋𝑧
𝑎0

,

𝑣 = −𝑢0 cos
𝜋𝑡

500Δ𝑡
sin

2𝜋𝑥
𝑎0

cos2
𝜋𝑦

𝑎0
sin

2𝜋𝑧
𝑎0

,

𝑤 = −𝑢0 cos
𝜋𝑡

500Δ𝑡
sin

2𝜋𝑥
𝑎0

sin
2𝜋𝑦
𝑎0

cos2
𝜋𝑧

𝑎0
,

in which 𝑢0 = 2.5m s−1 and 𝑎0 = 10m. The sphere is deformed to
the maximum at 𝑡 = 5 s and returns to its initial shape at 𝑡 = 10 s.
As displayed in Fig. 15, we conduct experiments on a 503 grid and
render the exported meshes at the mentioned two time instances.
The volume evolution curves are plotted in Fig. 21.

Similar to the 2D case, algorithms with higher orders acquire
smoother and more accurate shapes at 𝑡 = 5 s, and algorithms that
make better use of initial information recover more perfect spheres
at 𝑡 = 10 s. As illustrated in Fig. 21, such a forth-and-back scenario
may cause algorithms to coincidentally cancel volume loss in the
second half of the time, which is not true for our method. Besides,
for the PLS methods in 3D cases, we generate 64 and 256 particles
initially in each cell, while the recommended number is 32 [Enright
et al. 2005].

Distorted sphere (3D). Similar to the distorted circle (Fig. 19), a
3D version was designed accordingly. At 𝑡 = 0, a sphere of radius
𝑟 = 2m is centered at (0, 2.5m, 0), and then it is distorted by a
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Fig. 22. Volume evolution curves of the distorted sphere (3D). Every algo-
rithm, excluding Linear+RM, suffers from volume loss here. Though MC
and MC+RM seems to preserve volume well, their results are discontinuous
(see Fig. 17 and the supplementary video).

rotational velocity field

𝒖 =
𝑢0√︁

𝑥2 + 𝑦2 + 𝑟0
(𝑦,−𝑥, 0)

where 𝑢0 = 4m/s and 𝑟0 = 1.0m. From 𝑡 = 0 to 𝑡 = 6 s, the sphere
undergoes severe distortion and turns into a spiral. We test different
algorithms upon a 503 grid, whose final results are rendered in
Fig. 17, and volume evolution curves are plotted in Fig. 22.

We point out that this scene is not just a 3D extension of the 2D
version in the z-direction. The circle there is replaced by a sphere
rather than a cylinder, which is more challenging to capture after
distortion. Among all the algorithms, Linear and Quadratic fail to
preserve any volume after 6 s. Although reference mapping can im-
prove the results, such low-order algorithms still suffer from severe
numerical drifts. Algorithms with high-order accuracy, like MC and
MC+RM, perform well in this scenario. However, they cannot pro-
vide spatially and temporally continuous surfaces without extrema
clamping [Selle et al. 2008]. If the clamping strategy is applied, the
volume conservation will become worse. In addition, similar to the
2D version, the PLS method fails to reconstruct a smooth surface.
Our method outperforms all these schemes because it has not only
high accuracy order but also stability in thin-sheet capturing.

Convergence. We perform Zalesak’s disk and the distorted circle
tests on simulation grids of different resolutions in order to analyze
the algorithm convergence. In each test, we execute 20 time steps
(𝑡 = 0.4 s) and compare the simulation result with the ground truth
by Eq. (18). As plotted in Fig. 23, different algorithms exhibit similar
orders of accuracy in the tests of Zalesak’s disk. Based on the least-
squares fit, the orders of Linear, Quadratic, and Cubic are 1.47, 1.91,
1.83, respectively, while that of MC is 1.75. The worst algorithm
is PLS (64x) whose accuracy order is 1.29. Only GALS (2.41) and
reference-map augmented algorithms (2.52) converge at orders of
more than two. This phenomenonmay be caused by the non-smooth
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Fig. 23. Convergence curves of algorithms upon Zalesak’s disk. The tested
grid resolutions are 402, 502, 752, 1002, 1252, and 1502. The plotted curves
of Quadratic+RM, Cubic+RM, and MC+RM are all overlapped by that of
GARM-LS, which are omitted in the figure.
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Fig. 24. Convergence curves of algorithms upon the distorted circle. The
tested grid resolutions are 402, 502, 752, 1002, and 1252. Here we only plot
the results of reference-map augmented Linear, Quadratic, Cubic, and MC
for simplicity. Any original algorithm is slightly less accurate than its aug-
mented version.

level-set field around the slot. For the distorted circle scenario, the
difference in the order of accuracy between algorithms is more
pronounced. Sorted by the accuracy order from lowest to highest, the
algorithms in Fig. 24 are PLS (64x, 1.06), Linear+RM (1.79), MC+RM
(2.08), Quadratic+RM (2.45), Cubic+RM (3.70), GALS (3.94), and
GARM-LS (4.26), which is more consistent with intuition.

Summary on advection. According to the above results, the com-
bination of high-order advection schemes with reference-map en-
hancement are the key factors for the volume and shape preserva-
tion. As a purely Eulerian method, our GARM-LS meets the above
two necessary requirements and does demonstrate the correspond-
ing advantageous in all the quantitative test.

6.1.2 Reinitialization. As for the reinitialization step, the valida-
tions mainly focus on two aspects: one is the order of accuracy and
the other is the robustness of the algorithm.
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Fig. 25. The first test case of reinitialization, with the left one showing the
distorted level-set function and the right one showing the corresponding
SDF. Higher values are mapped to warmer colors.
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Fig. 26. The second test case of reinitialization, with the left one showing
the distorted level-set function and the right one showing the corresponding
SDF. Higher values are mapped to warmer colors.

Convergence. The comparison of the order of accuracy is con-
ducted among our GARM-LS, fast marching, ENO and WENO algo-
rithms on two static analytical tests.

As demonstrated in the left image of Fig. 25, the distorted level-set
function of the first test with a single sphere is

𝜑 (𝑥,𝑦) =
(
(𝑥 − 1)2 + (𝑦 − 1)2 + 0.1

) (√︃
𝑥2 + 𝑦2 − 1

)
,

whose corresponding SDF is

𝜑 (𝑥,𝑦) =
√︃
𝑥2 + 𝑦2 − 1,

as shown in the right image of Fig. 25. As demonstrated in the left
image of Fig. 26, the distorted level-set function of the second test
with two separated spheres is

𝜑 (𝑥,𝑦) = min
{
e(𝑥−𝑥0)

2+(𝑦−𝑦0)2 − e𝑟
2
0 , e(𝑥−𝑥1)

2+(𝑦−𝑦1)2 − e𝑟
2
1
}
,

whose corresponding SDF is

𝜑 (𝑥, 𝑦) = min
{√︃
(𝑥 − 𝑥0)2 + (𝑦 − 𝑦0)2 − 𝑟0,

√︃
(𝑥 − 𝑥1)2 + (𝑦 − 𝑦1)2 − 𝑟1

}
,

as illustrated in the right image of Fig. 26.
In each test, the distorted level-set function is initially given and

reinitialized with aforementioned 4 different algorithms. For each
individual algorithm, the difference between the derived field and
the corresponding SDF is quantitatively evaluated using Eq. (18).
The convergence curves of these two tests are plotted in Fig. 27 and
Fig. 28 respectively. From these two results, we conclude that the
fast-marching method is first-order accurate around the interface,
while the accuracy orders of ENO and WENO are both nearly 1.5th
order. Our method is fourth-order accurate.

Robustness. To further verify the validity of our reinitialization
scheme in practical fluid simulation, we perform a comparison ex-
periment with the algorithm of Anumolu and Trujillo [2013] on a
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Fig. 27. Convergence curves of reinitialization algorithms upon the first
analytical scene. The tested grid resolutions are 502, 1002, 2002, 4002, 8002,
and 16002.
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Fig. 28. Convergence curves of reinitialization algorithms upon the second
analytical scene. The tested grid resolutions are 502, 1002, 2002, 4002, 8002,
and 16002.

4-way dam break scene(§6.2). All the other procedures are identical
with gradient and reference-map augmented. As shown in Fig. 29,
as time flies, the dynamic simulation with Anumolu and Trujillo
[2013]’s reinitialization shows severe instability issue: the volume
of fluid grows uncontrollably due to non-convergence of the quasi-
Newton method. Since our reinitialization scheme enhances the
original algorithm of Anumolu and Trujillo [2013] with initial guess,
back-and-forth trial, and fast-marching post-processing (see §4.3.3),
the simulation result with GARM-LS shows more stable and robust
behaviors.

Summary on reinitialization. We have verified that our method,
namely GARM-LS, possesses a fourth-order accuracy around the
interface in the reinitialization step, as its original algorithm [2013].
Besides the high order accuracy, all the enhancements proposed in
§4.3.3 have been proofed to be indispensable for the overall con-
vergence of the dynamic fluid simulation, in which fluid surface
usually undergoes large distortion, and the nearest point frequently
exhibits ambiguity/singularity issue.
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Anumolus et al. [2013] GARM-LS

Fig. 29. Comparison of the original reinitialization algorithm and our im-
proved version upon practical dynamic scenario of 4-way dam break.

6.2 Examples
For 3D simulations, we have designed several experiments to demon-
strate the efficacy of our framework in simulating high-resolution
liquids and preserving small fluid volumes. A GPU-based precondi-
tioned conjugate gradient solver is adopted in our projection stage,
while the other parts of the pipeline run on CPU. Statistics on all
experiments (except for the high-resolution dam break) are collected
from a desktop machine with an Intel i7-8700@ 3.20GHz CPU, 16GB
RAM, and an NVIDIA GeForce GTX 1060 graphics card, as listed in
Tab. 3. The high-resolution dam break (case 1 in the table) is tested
on a server machine with an Intel Xeon W-3175X @ 3.10GHz CPU,
160GB RAM, and an NVIDIA Quadro RTX 8000 graphics card. The
narrow-band FLIP [Ferstl et al. 2016] implementation is taken from
Houdini on another server.1
For simplicity, hereafter unless otherwise specified, we will re-

fer to a specific simulation method using the acronym of advec-
tion scheme listed in Table. 2 with "+FMM" suffix whenever fast-
marching reinitialization scheme is adopted. (For PLS and GARM-LS,
the reinitialization scheme is inherently included by themselves.)

4-way dam break. In this example, bulks of incompressible liquid
fall from 4 separate breaking dam without viscosity and surface
tension, forming thin sheets of fluid and splashes.
We simulate this scenario with six different methods, includ-

ing Linear+FMM, Cubic+FMM, Cubic+RM+FMM, PLS(128x), our
GARM-LS, and narrow-band FLIP. Fig. 2 shows the intermediate
frame when the thin sheets are present. Although all the methods
(except Linear+FMM) manage to show some kinds of thin sheet,
only PLS, narrow-band FLIP, and GARM-LS could preserve the
splashes at the center of fluid region. Furthermore, Linear+FMM
and Cubic+FMM also suffer from numerical diffusion, which cause
the liquid looks excessively viscous, see the supplementary video.
Fig. 30 depicts the volume evolution of all the methods. Same as
we saw in §6.1, the simulations enhanced by the reference map
perform much better in preserving the volume. We point out that
the FLIP method is skilled at generating vivid splashes, but its ability
to maintain the total volume and surface smoothness is limited.

Dam break. This classical 3D example is initialized with a cylin-
drical obstacle located at the center of the square. The water from
a breaking dam pours down and hit the obstacle, causing splashes
into the air. The liquid surface has undergone extreme distortion in
response to gravity, surface tension, and collision.
1The performance of the narrow-band FLIP method is not statistically available due to
its large differences in implementation.
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Fig. 30. Volume evolution curves of the 4-Way Dam Break test. Among
the methods, only the volume of FLIP is increasing; all the others have
experienced varying degrees of volume loss. The volume variation of Cu-
bic+RM+FMM is the smallest, because this method is also enhanced with
high-order reference mapping but does not produce the same pronounced
splash effects as GARM-LS.

We simulate this scenario with three different methods, including
Cubic+FMM (here we use a high-resolution level-set method with
cubic interpolation scheme and fast marching for redistancing),
Cubic+RM+FMM, PLS(128x), and GARM-LS method, as seen in
Fig. 31. Compared to the high-resolution level-set method and PLS,
the methods enhanced by the reference map perform much better
in preserving the volume of fluid, which is supported by Fig. 32.
Nevertheless, in Cubic+RM+FMM, the splashes that stem from the
collision quickly smear out due to the reinitialization procedure,
while PLS and GARM-LS manage to capture the water droplets,
and produce vibrant outcomes. Among all the tested methods, only
GARM-LS shows superior merit in both volumetric fluid simulation
and splash simulation.

Cubic+FMM Cubic+RM+FMM

PLS (128x) GARM-LS

Fig. 31. Comparisons of water falling from a breaking dam among different
interface-tracking methods at frame 100.
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Table 3. Performance and statistics. (1-6) 4-Way Dam Break (without surface tension); (7-11) Dam break (with surface tension); (12) Galton board (high surface
tension); (13) Galton board (low surface tension); (14) Droplet collides (high surface tension); (15) Droplet collide (low surface tension); (16) Diagonal collide;
(17) Raining on juice; (18) Rinsing a bunny.

Case Figure Algorithm Resolution Cell size Frame interval CFL Simulation time/step†
Δ𝑥/mm Δ𝑡/s Total Advect. Reinit. Proj. Extra.

1 Fig. 2 Linear+FMM 192 × 144 × 192 5.32 1/150 1.0 6.27 s 1.91 s 1.31 s 1.29 s 1.75 s
2 Fig. 2 Cubic+FMM 192 × 144 × 192 5.32 1/150 1.0 9.36 s 4.81 s 1.30 s 1.29 s 1.96 s
3 Fig. 2 Cubic+RM+FMM 192 × 144 × 192 5.32 1/150 1.0 11.58 s 5.81 s 1.29 s 1.33 s 3.15 s
4 Fig. 2 PLS (128x) 192 × 144 × 192 5.32 1/150 1.0 35.40 s 30.90 s 1.29 s 1.37 s 1.84 s
5 Fig. 2 Narrow-Band FLIP 192 × 144 × 192 5.32 1/150 1.0
6 Fig. 2 GARM-LS 192 × 144 × 192 5.32 1/150 1.0 15.24 s 8.99 s 1.93 s 1.33 s 3.00 s
7 Fig. 31 Cubic+FMM 256 × 307 × 512 3.91 1/100 1.0 122.48 s 10.06 s 3.35 s 104.55 s 4.53 s
8 None‡ Cubic+FMM 192 × 230 × 384 3.91 1/100 1.0 66.26 s 14.77 s 1.42 s 43.44 s 6.64 s
9 Fig. 31 Cubic+RM+FMM 192 × 230 × 384 5.32 1/100 1.0 73.60 s 18.41 s 1.43 s 42.51 s 11.25 s
10 Fig. 31 PLS (128x) 192 × 230 × 384 5.32 1/100 1.0 52.94 s 25.68 s 1.40 s 19.20 s 6.66 s
11 Fig. 31 GARM-LS 192 × 230 × 384 5.32 1/100 1.0 83.14 s 28.39 s 2.36 s 41.42 s 10.97 s
12 Fig. 3 GARM-LS 256 × 256 × 51 23.8 1/100 1.0 18.34 s 5.81 s 0.41 s 9.32 s 2.81 s
13 Fig. 3 GARM-LS 256 × 256 × 51 23.8 1/100 1.0 18.39 s 5.81 s 0.51 s 9.74 s 2.33 s
14 Fig. 6 GARM-LS 256 × 256 × 256 23.8 1/100 1.0 81.97 s 28.47 s 1.88 s 40.56 s 11.05 s
15 Fig. 6 GARM-LS 256 × 256 × 256 23.8 1/100 1.0 81.81 s 28.97 s 1.88 s 40.57 s 11.09 s
16 Fig. 7 GARM-LS 256 × 64 × 128 23.8 1/400 1.0 12.54 s 3.66 s 0.32 s 7.05 s 1.51 s
17 Fig. 8 GARM-LS 256 × 256 × 256 3.97 1/200 1.0 99.76 s 28.65 s 2.66 s 57.95 s 10.50 s
18 Fig. 33 GARM-LS 192 × 230 × 192 4.26 1/150 1.0 42.62 s 14.74 s 1.11 s 20.78 s 5.99 s
† The collected simulation time is averaged. Abbreviations Advect., Reinit., Proj., and Extra. denote the advection time, reinitialization time (including restart time), projection time
(including time for applying surface tension), and extrapolation time respectively.

‡ This setup is not rendered since it performs worse than the existing version with higher resolution. The case is listed here for the comparison of performance with other algorithms.
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Fig. 32. Volume evolution curves of the Dam Break test.

Galton board. In this set of examples, a staggered array of cylindri-
cal obstacles is placed in a flat box, forming a Galton board. Instead
of a coin, a fluid ball falls through the board and split into pieces
as a result. Fig. 3 shows 2 different setups for this example: one for
the high-surface-tension fluid and one for the low surface tension.
Splitting and merging happen consistently in the simulation. Since
fluid-structure interaction is beyond the scope of this paper, our cur-
rent implementation cannot guarantee completely divergence-free

velocities at solid boundaries. This imperfection can occasionally
lead to grid artifacts, such as fluid flickering and shrinkage on the
cylindrical obstacle in this example. We will discuss this later in §7.

Droplet collide. These examples showcase our method’s ability
to track fluids with low dissipation. Two spheres are dyed blue and
green respectively at the initial phase. As shown in Fig. 6, the two
droplets collide and drop onto the ground, with their color gradually
mixed with each other. Here, the reference map is further exploited
for the color advection in the same way as it is used for level-set
function. In the advection step, the transport equation of color 𝑐

𝜕𝑐

𝜕𝑡
+ (𝒖 · ∇)𝑐 = 0 (20)

is solved through backtracking the reference map

𝑐 (𝑥𝑖 , 𝑡) = 𝑐 (𝝃 (𝑥𝑖 , 𝑡), 𝑡0) (21)

to obtain the interpolated color at 𝑡0, which refers to the last time the
reference map restarted. With the aid of the reference map, we are
able to acquire lower numerical diffusion and a clearer separation
of the fluids.

Diagonal collide. We simulate the collision of 2 droplets in diago-
nal directions with noticeable surface tension. In Fig. 7, most of the
droplets just go past each other, leaving a line-style piece of water
in the middle of the scene. Finally, driven by surface tension, the
piece of water contracted to form a sphere. Our method successfully
keeps a smooth surface during the collision.
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Fig. 33. Rinsing a bunny with a water jet. Frame numbers from left to right:
50, 150, 250.

Dropping juice. Fig. 8 shows droplets of orange juice dropping
into a layer of juice and splashing. The radii of the droplets in
this example are only several times the size of a cell. Our method
manages to preserve the volume of every droplet until it drops into
the layer. The same method can apply to similar scenes including
raining and spraying.
Here we use the standard marching cubes algorithm to recon-

struct the surface for rendering. However, the expressiveness of
GARM-LS is beyond that of the marching cubes algorithm, hence
some sub-cell fluid is omitted from the reconstructed surface, caus-
ing jagged artifacts on the edge of splash crown. A finer surface
can be reconstructed by simply making a refined level-set function,
but to solve the problem thoroughly, a higher-order reconstruc-
tion/rendering algorithm is called for.

Rinsing a bunny. As shown in Fig. 33, a bunny is rinsed by a water
jet. Splashes from the point of impact fly over distances and finally
fall apart from the viewport. The result showcases the ability of
our method by interacting with complex boundaries and producing
small, pinched-off droplets.

7 CONCLUSIONS AND FUTURE WORK
This paper presents GARM-LS, a novel level-set method based on
gradient augmentation and reference map, for tracking complex
interface dynamics in interfacial flow simulations. The central piece
of our method is a gradient augmentation scheme to convect level
set values and their gradients on a reference map. We build a full
pipeline for GARM-LS interface tracking by devising novel algo-
rithms for advection, interpolation, extrapolation, and reinitializa-
tion, which enable accurate and robust interface tracking results
outperforming various state-of-the-art methods.

Compared to existing work incorporating a high-resolution level-
set with the low-resolution physics [Bojsen-Hansen and Wojtan
2013; Goldade et al. 2016], our method focuses more on characteriz-
ing interfacial geometry with a high-order representation, i.e. the
gradient-augmented scheme. As is pointed out by Nave et al. [2010],
a high-order surface tracker not only better preserves fluid volume
and fluid thin structures during a dynamic simulation, but also en-
ables a high-order approximation of the local interface curvature,
which is crucial for obtaining various surface tension driven flow
behaviors in a physically accurate manner. On the other hand, this
high-order surface tracking scheme as well as the smooth nature
of a implicit surface make our method distinct from particle-based
methods (e.g. PIC/FLIP and SPH). While the particle-based methods
have achieved success in simulating large-scale liquids, our method
exhibits more benefits for an accurate representation of interfacial

fluids at small scales where surface tension dominates. We believe
our work opens up a new direction towards fully physically accurate
small-scale fluid animation and hence raises opportunities for future
improvement, which we will discuss in the following paragraphs.

Coupling with solids. Our method does not include a mechanism
for fully accurate interpolation around the solid boundaries. Due to
grid-level errors in interpolation and projection, small droplets may
flicker or shrink when they are close to the solid boundaries. It is
beneficial to combine our method with a more accurate boundary
interpolation scheme, such as the cut-cell approach [Azevedo et al.
2016]. From the perspective of strict volume preservation, coupling
our method with some VOF methods is also beneficial.

Full high-order solver. Although our method exhibits outstanding
capability in high-order interface tracking, the velocity projection
and the semi-implicit surface tension scheme in the traditional
Navier-Stokes solver are not modified to accommodate the finer
interface representation. Therefore, the derived velocities may not
be pointwise divergence-free, which in turn leads to some incorrect
fluid behavior. For instance, a thin thread of fluid will not break
up properly into droplets due to the lack of sub-cell level surface
tension discretization. With a high-order projection and surface
tension scheme, we expect a totally fourth-order accurate solver for
free-surface fluids.

Rendering. In this work we reconstruct the fluid surface from
level sets by the standard marching-squares/cubes algorithm. How-
ever, since these algorithms are not aware of the sub-grid details of
the fluid (i.e., the high-order information of the level set), jagged ar-
tifacts can be observed on the reconstructed surface. A higher-order
surface reconstruction algorithm for implicit geometry representa-
tions is desired to avoid this bottleneck lying in the rendering stage.
One interesting possibility is a customized ray marching algorithm
for our GARM-LS method to enable a smooth and precise surface
rendering.

Performance. It is worth noting that the computational merits of
using a Cartesian grid were not fully explored in GARM-LS. Dis-
cretizing our GARM-LS method on sparse/adaptive data structures
(e.g., [Narita and Ando 2022]) remains an unexplored topic. The
parallelization of our fluid solver also deserves further investigation.
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A CELL-BASED HERMITE INTERPOLATION
Suppose that we are interpolating values of a function 𝑓 within
a two-dimensional axis-aligned cell, the bicubic Hermite scheme
suggests us with

𝑓 (𝑥,𝑦) =
∑︁

𝑝,𝑞,𝑟,𝑠∈{0,1}
𝜔𝑝𝑞,𝑟𝑠

(
𝑥 − 𝑥min

Δ𝑥
,
𝑦 − 𝑦min

Δ𝑦

)
𝑓𝑝𝑞,𝑟𝑠 , (22)

where lengths of the two cell sides are defined by Δ𝑥 = 𝑥max − 𝑥min
and Δ𝑦 = 𝑦max − 𝑦min, respectively.

Here, 𝑓𝑝𝑞,𝑟𝑠 represents the original function value, the first partial
derivatives, and the second order mixed partial derivative, in which
𝑓00,𝑟𝑠 , 𝑓01,𝑟𝑠 , 𝑓10,𝑟𝑠 , and, 𝑓11,𝑟𝑠 are the values respectively sampled at
the lower-left, lower-right, upper-left, and upper-right nodes of the

cell. Besides, 𝑟 and 𝑠 denote the order of partial derivatives w.r.t. 𝑥
and 𝑦, respectively. The weight function takes the form of

𝜔𝑝𝑞,𝑟𝑠 (𝜃1, 𝜃2) = 𝑤𝑝,𝑟 (𝜃1)𝑤𝑞,𝑠 (𝜃2), (23)

where 𝜔𝑝,𝑟 , as well as 𝜔𝑞,𝑠 , is a polynomial of at most degree 3,
defined as follows

𝜔𝑝,𝑟 (𝜃 ) =


𝑓 (𝜃 ), 𝑝 = 0 ∧ 𝑟 = 0, (24a)
𝑓 (1 − 𝜃 ), 𝑝 = 1 ∧ 𝑟 = 0, (24b)
𝑔(𝜃 ), 𝑝 = 0 ∧ 𝑟 = 1, (24c)
−𝑔(1 − 𝜃 ), 𝑝 = 1 ∧ 𝑟 = 1, (24d)

where 𝑓 (𝜃 ) = 2𝜃3 − 3𝜃2 + 1 and 𝑔(𝜃 ) = 𝜃3 − 2𝜃2 + 𝜃 hold.
Since the hybrid derivative 𝜕𝑓 2/𝜕𝑥𝜕𝑦 is not maintained during

gradient augmentation, before performing the above interpolation,
we evaluate the hybrid derivative by a central difference method as
follows:

𝜕2𝑥𝑦 𝑓𝑖 𝑗 =
𝜕𝑦 𝑓𝑖+1, 𝑗 − 𝜕𝑦 𝑓𝑖−1, 𝑗

2Δ𝑥
+ O(Δ𝑥2). (25)

It is proved that a second-order accurate scheme is sufficient here
for fourth-order interpolation.
In a three-dimensional case, the tricubic Hermite interpolation

is similar to that described above, except that the number of hy-
brid derivatives is four, namely 𝜕2𝑥𝑦 𝑓 , 𝜕2𝑥𝑧 𝑓 , 𝜕2𝑦𝑧 𝑓 , and 𝜕3𝑥𝑦𝑧 𝑓 , which
should all be acquired by central differences.
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